ИК-спектрометрические исследования стеклоперехода фреона CF3-CFH2
Ключевые слова:
фреон, стеклопереход, ИК-спектрАннотация
Проведены ИК-спектрометрические исследования структурно-фазовых превращений в криоконденсированных пленках Фреона 134а. Исследования проведены в интервале температур 16-100 К. Обнаружено, что криопленки фреона 134а, образованные при Т=16К, при нагреве в интервале температур от 70 до 90 К испытывают многократные структурные трансформации различной природы. Делается вывод, что при температуре Тg=72 К имеет место переход стеклообразного состояния в сверхпереохлажденную жидкость (G-SCL). При температуре около Т=78 К начинается кристаллизация SCL в состояние ориентационно разупорядоченного пластического кристалла. При температуре Ttrans=80 К осуществляется второй квази-стеклопереход из состояния ориентационного стекла в пластический кристалл с упорядоченной вращательной подсистемой. В интервале температур 83-85 К реализуется фазовый переход пластический кристалл- моноклинный кристалл.
Библиографические ссылки
2. M.A. Satorre, M. Domingo, C. Millan, R. Luna, R. Vilaplana and C. Santonja, Planet. Space Sci. 56, 1748-1752, (2008) https://doi.org/10.1016/j.pss.2008.07.015
3. A. Perry Gerakines and L. Reggie Hudson, Astrophysical Journal Letters, 805, 2, L20, (2015) DOI: 0.1088/2041-8205/805/2/L20
4. A. Aldiyarov, A. Drobyshev, D. Sokolov and A. Shinbayeva, JLTP 187, 742 (2017)
5. R.L. Hudson, M.J. Loeffler and P.A. Gerakines, J. Chem. Phys. 146, 024304 (2017) https://doi.org/10.1063/1.4973548
6. J.J. Harrison, J. of Quantitative Spectroscopy & Radiative Transfer 151, 210-216 (2015). https://doi.org/10.1016/j.jqsrt.2014.09.023
7. T. Hama and N. Watanabe, Chem. Rev. 113, 8783 (2013)
8. G. Mulas, G.A. Baratta, M.E. Palumbo and G. Strazzulla, Astron. Astrophys. 333, 1025-1033 (1998)
9. Bohn R.B., Sandford S.A., Allamandola L.J. and Cruikshank D.P., Icarus 111, 151 (1994)
10. W. M. Grundy, B. Schmitt and E. Quirico, Icarus 155, 486-496 (2002). https://doi.org/10.1006/icar.2001.6726
11. A. Aldiyarov, M. Aryutkina, A. Drobyshev, and at al, Low. Temp. Phys. 37, 524 (2011). https://doi.org/10.1063/1.3622633
12. Y.Z. Chua, M. Tylinski, S. Tatsumi, M.D. Ediger and C. Schick, J. Phys. Chem. 144, 244503 (2016) https://doi.org/10.1063/1.4954665
13. W. Zhang, C.W. Brian, and L. Yu, J. Phys. Chem. B 119(15), 5071-5078 (2015). DOI: 10.1021/jp5127464
14. S.F. Swallen, K. L. Kearns, M. K. Mapes, Y. S. Kim, R. J. McMahon, M. D. Ediger, T. Wu, L. Yu, and S. Satija, Science 315(5810), 353 (2007). DOI: 10.1126/science.1135795
15. S.L.L. M. Ramos, A.K. Chigira, and M. Oguni, J. Phys. Chem. B 119(10), 4076-4083 (2015). DOI: 10.1021/jp5109174
16. A.D. Lopata and Durig, J.R.J. Raman Spectrosc. 6, 61 (1977)№ https://doi.org/10.1002/jrs.1250060203
17. L. Xu, A. Andrews, R. Cavanagh, G. Fraser, K. Irikura, F. Lovas, J. Grabow, W. Stahl and M. Crawford Smalley. J. Phys. Chem. A 101, 2288-2297 (1997). DOI: 10.1021/jp9640383
18. A. Drobyshev, A. Aldiyarov, A. Nurmukan, D. Sokolov and A. Shinbayeva, ФНТ 43 (5), (2018). (in press). (in Russ)
19. A. Aldiyarov, M. Aryutkina and A. Drobyshev, Low Temp. Phys. 37 (6), 524 (2011) https://doi.org/10.1063/1.3622633
20. A. Drobyshev, K. Abdykalykov and A. Aldiyarov, Low Temp. Phys. 33 (8), 699 (2007). https://doi.org/10.1063/1.2746844
21. M. Brunelli and A. N. FitchI, Z. Kristallogr. 217, 395 (2002). https://doi.org/10.1524/zkri.217.7.395.23638
22. L. Xu, A. Andrews, R. Cavanagh, G. Fraser, K. Irikura, F. Lovas, J. Grabow, W. Stahl and M. Crawford, Smalley, J. Phys. Chem. A 101, 2288-2297 (1997). DOI: 10.1021/jp9640383
23. A. Aldiyarov, M. Aryutkina, A. Drobyshev, M. Kaikanov, and V. Kurnosov, Low Temp. Phys. 35 (4), 251 (2009). https://doi.org/10.1063/1.3114588
24. M.D. Ediger, C.A. Angell and Sidney R. Nagel, J. Phys. Chem. 100, 13200-13212 (1996). DOI: 10.1021/jp953538d
25. V. Petrenko and R. Whitworth, Physics of Ice, (Oxford Univ. Press Inc., NY, 1999). DOI:10.1093/acprof:oso/9780198518945.001.0001