Влияние температуры, статической нагрузки и электронного облучения на деформацию линейных полимерных пленок

Авторы

  • A.I. Kupchishin Казахский национальный педагогический университет имени Абая, Казахстан, г. Алматы
  • M.N. Niyazov Казахский национальный педагогический университет имени Абая, Казахстан, г. Алматы
  • B.G. Taipova Казахский национальный педагогический университет имени Абая, Казахстан, г. Алматы
  • N.N. Khodarina Казахский национальный педагогический университет имени Абая, Казахстан, г. Алматы
  • K.S. Shakhanov Казахский национальный педагогический университет имени Абая, Казахстан, г. Алматы
  • B.A. Tronin Казахский национальный педагогический университет имени Абая, Казахстан, г. Алматы
        73 47

Ключевые слова:

температура, деформация, прочность, линейные полимеры, статическая нагрузка, облучение, поглощенная доза, математическая модель

Аннотация

Проведены экспериментальные исследования по влиянию температуры, статической нагрузки и электронного облучения на деформацию политетрафторэтилена. До 35 °С воздей-ствие нагрузки и температуры приводит к резкому удлинению образцов, что вызвано выпрям-лением закрученных комплексов макромолекул и жестко связанных цепей. Катастрофическое разрушение слабых цепей, в том числе связанных с наличием фазовых переходов, происходит при росте температуры до 45 °С. Кривая ε(t) имеет тенденцию постепенного выхода на насы-щение при t > 40 °С, что связано с разрывом жестких, более прочных цепей. Максимальная деформация 500 % достигается при t = 85 °С и σ = 13 МПа. Исследованы зависимости воз-вратной деформации от времени при различных значениях статической нагрузке и комнатной температуре. С ростом дозы облучения возвратная деформация уменьшается, а предел проч-ности полимера принимает значение равное 6 – 9 МПа. Электронное воздействие на политет-рафторэтилен приводит к уменьшению пластичности и к существенному уменьшению возврат-ной деформации, что связано с деструкцией полимера. Удовлетворительное согласие экспери-ментальных данных с расчетом показывают кривые, описывающиеся в рамках экспоненциаль-ной модели.

Библиографические ссылки

1 B.A. Loginov The Wonderful world of fluoropolymers (M.: house of printing "Vyatka», 2009) 128 p. (in Russ).

2 G.S. Baronin at al, Processing of polymers in the solid phase: studies, Manual (Tambov: publ. state technical University, 2009), 140 p. (in Russ).

3 K.B. Tlebaev, A.A. Kupchishin, and Kupchishin A.I., Materials Science and Engineering 81 012005, 1-4. (81 011002) (2015).

4 G. Fox-Rabinovich, A. Kovalev, M.H. Aguirre, K. Yamamoto, S. Veldhuis, I. Gershman, A. Rashkovskiy, J.L. Endrino, B. Beake, G. Dosbaeva, D. Wainstein, JunifengYuan and Bunting J. W., Appl. Surf. Sci., 297. 22-32 (2014).

5 S. Veprek, J. of Vacuum Sci. & Technology A. 31, 050822 (2013).

6 D.V. Pugachev, V.M. Buznik, A.M. Stolin, J.E. Vopilov, and G.S. Baronin, Bulletin of TSTU, 17, 2 (2011). Transactions TSTU. vestnik.tstu.ru

7 V.A. Ivchenko, Materials Science and Engineering 110, 012003, 1-5 (2016).

8 N.A. Voronova, A.I. Kupchishin and B.G. Taipova, Key Engineering Materials, 769, 72-77 (2018)

9 N.A. Voronova, A.I. Kupchishin, Niyazov M.N. and Lisitsyn V.M., Key Engineering Materials, 769, 78-83 (2018).

10 A.I. Kupchishin, V.M. Lisitsyn, M.N. Niyazov and N.A. Voronova, Journal of Physics 012141, 1-4 (2017).

11 А.I. Kupchishin, B.G. Taipova, V.M. Lisitsyn, A.A. Kupchishin, N.A. Voronova and V.I. Kirdiashkin, 12th Intern. Conf. on Gas Discharge Plasmas and Their Applications (Journal of Physics, 2015), р. 1-4.

12 A.P. Surzhikov, O.V. Galtseva, E.A. Vasendina, V.A. Vlasov and E.V. Nikolaev, Materials Science and Engineering, 110 012002, 1-4 (2016).

13 V.E.Wildeman, Experimental studies of the properties of materials under complex thermomechanical effects (M.: Fizmatlit, 2012), 203 с. (in Russ).

14 A.I. Kupchishin, B.G. Taipova, A.A. Kupchishin, N.A. Voronova, V.I. Kirdyashkin and T.V. Fursa, Material Science and Engineering 110 012037, 1-5 (2016).

15 A.I. Kupchishin, A.A. Kupchishin, N.A. Voronova, V.I. Kirdyashkin, and V.A. Gyngazov, Material Science and Engineering 110 012039, 1-4 (2016).

16 V.V. Zuev, M.V. Uspenskaya and A.O. Olekhnovich Physics and chemistry of polymers: Studies. Allowance (St. Petersburg.: SPbSU ITMO, 2010), 45 p. (in Russ).

17 M.H. Mukhametrakhimov, Fundamental problems of modern materials science, 10, 1, 82-86 (2013).

18 Yu.K. Mashkov, Z.N. Ovchar, V.I. Surikov, and L.F. Kalistratova, Composite materials based on polytetrafluoroethylene (Moscow: Mashinostroenie, 2005), 239 с. (in Russ).

19 Surface Engineering for Enhanced Performance against Wear/ by ed. M. Roy. (Springer-Verlag Wien., 2013), 319 p.

20 T.N. Koltunowich, P. Zhukowski, V. Bondariev, J.A. Fedotiva, and A.K. Fedotov, Acta Physica Polonica A, 123, 5, 932-934 (2013).

Загрузки

Как цитировать

Kupchishin, A., Niyazov, M., Taipova, B., Khodarina, N., Shakhanov, K., & Tronin, B. (2018). Влияние температуры, статической нагрузки и электронного облучения на деформацию линейных полимерных пленок. Вестник. Серия Физическая (ВКФ), 66(3), 55–61. извлечено от https://bph.kaznu.kz/index.php/zhuzhu/article/view/785

Выпуск

Раздел

Физика конденсированного состояния и проблемы материаловедения. Нанонаука

Наиболее читаемые статьи этого автора (авторов)