Modeling of the collating dust process by a window air cleaner

  • L.V. Mikhailov Al-Farabi Kazakh National University, Kazakstan, Almaty
  • R.Zh. Yersayn Al-Farabi Kazakh National University, Kazakstan, Almaty
  • S.L. Mikhailova Al-Farabi Kazakh National University, Kazakstan, Almaty
  • G.A. Ismailova Al-Farabi Kazakh National University, Kazakstan, Almaty
  • A.S. Sokolov Al-Farabi Kazakh National University, Kazakstan, Almaty


You can use the facades of residential and administrative urban buildings to clean the city's air from ash and dust, including them in household systems and devices of smart building facades. In this case, not only the ecological task of smog control will be achieved, but economic problems with efficient use of alternative energy sources and reducing greenhouse gas emission using solar panels and energy saving technology in systems that improve comfort of the rooms as well. Since users of dust-collected devices are supposed to be natural persons, one of the tasks is requirement to develop a safe and economy-type of air cleaning. So, it is necessary to use of renewable energy flows coming to the building facades and windows which are upstream and downstream air, solar irradiation and heat flows. One of the most important tasks is to generate consumer demand for devices using the developed method of air cleaning from ash and dust. To do this, it is essential to find accompanied consumer functions that will be united in one device with an air purifier. It is shown that voltage Ue - 600 V and the battery energy costs 50J will be sufficient to charge the dust particles and prevent them from deflating air.


1 T. Bayyers, 20 konstruktsiy s solnechnymi elementami, (Mir, Moskva, 1988), 197 p. (in Russ.).

2 D, Tvaydell, Vozobnovlyayemyye istochniki energii, (Mir, Moskva, 1990), 393 s. (in Russ.).

3 Zh. Ning et al., Energy Procedia, 52, 651 – 658 (2014).

4 A.K. Ioannou, N.E. Stefanakis, and A.G. Boudouvis, Energy Build, 76, 588–596 (2014).

5 D. Liu and H. Shiroyama, Renew. Sustain. Energy Rev., 25, 782–792 (2013).

6 M. Meytin Fotovol'taika: materialy, tekhnologii, perspektivy, 6, 40-46 (2000). (in Russ.).

7 J. Yudelson and U. Meyer, The world greenest buildings, (Routledge, Abilgdon, 2013), 257 p.

8 A. Basnet, Architectural Integration of Photovoltaic and Solar Thermal Collector Systems into buildings, (Reports, Trondheim, 2012), 112 p.

9 D.C. Martins, Renewable Energy, 2013, 406312-406330 (2013).

10 J. Pearce, S. Debnath, and A. Vora, Combined photovoltaic solar thermal systems (PVT) - literature review (MY 5970/EE 5900-Solar Hacking: Photovoltaic Materials, Cells and Systems Engineering, Houghton, 2012), 40 p.

11 N.R. Moheimani and D. Parlevliet, Renew. Sustain. Energy Rev., 27, 494-504 (2013).

12 O. Hasan and A. Arif, Sol. Energy Mater. Sol. Cells, 122, 75–87 (2014).

13 F. Roos, Proc. of China's International Conference for the Solar Industry (Beijing, December 11-13, 2012), p. 68-84.

14 C. Boonstra, Proc of China's International Conference for the Solar Industry (Beijing, December 11-13, 2012), p. 92-112.

15 A. Huy, S. Ahn, S. Han, et al., Sol. Energy Mater. Sol. Cells, 125, 176–183 (2014).

16 Andrews, and J.M. Pearce, Sol. Energy Mater. Sol. Cells. 124, 111–116 (2014).

17 M.A. Eltawil och Z. Zhao, Renew. Sustain. Energy Rev. 14 (1), 112–129 (2010).

18 E. Skoplaki, A.G. Boudouvis, and J.A. Palyvos, Sol. Energy Mater. Sol. Cells, 92 (11), 1393–1402 (2008).

19 R. Feynman, R. Leyton, and M.Sends, Feynmanovskiye lektsii po fizike. Tom 5: Elektrichestvo i magnetizm. (Moskva, Editorial URSS, 1960), p. 291. (in Russ.).

20 L.V. Mikhaylov, S. Mikhaylova, and G.Ismailova, et al., Proc of 15-th International Multidisciplinary Scientific Geo-Conference & EXPO – SGEM (Bulgaria, 17-24 June, 2015), р. 68-74.

21 L.V. Mikhailov, S. Mikhailova, G. Ismailova et al., Mediterranean Green Buildings & Renewable Energy, 609 – 617 (2017).

22 L.V. Mikhaylov, D.R. Mamishev, M.Zh. Kuatova, et all. Sbornik nauchnykh statey VI Mezhdunarodnoy nauchno-prakticheskoy konferentsii (Barnaul, 11-12 March 2016), p. 226-229. (in Russ.).

23 L.V. Mikhaylov, D.R. Mamishev, M.N. Sultangazina, et al., Cb. nauchnykh statey VII Mezhdunarodnoy nauchno-prakticheskoy konferentsii Mnogoyadernyye protsessory, parallel'noye programmirovaniye, PLIS, sistemy obrabotki signalov (Barnaul, 10-11 March 2017), p. 237-243. (in Russ.).

24 L.V. Mikhaylov, A.M. Sidlyarov, N.S. Gabdulova, et al., Vysokoproizvoditel'nyye vychislitel'nyye sistemy i tekhnologii, 8 (1), 172-176 (2018). (in Russ.).

25 P.A. Dolina, Spravochnik po tekhnike bezopasnosti, (Energiya, Moskva, 1990), 824 p. (in Russ.).

26 I.S. Chekman, A.O. Syrovaya, S.V. Andreyeva, and V.A. Makarov, Aerozoli - dispersnyye sistemy: Monografiya, (Tsifrova drukarnya, Khar'kov, 2013, No 1), 100 p. (in Russ.).
How to Cite
MIKHAILOV, L.V. et al. Modeling of the collating dust process by a window air cleaner. Recent Contributions to Physics (Rec.Contr.Phys.), [S.l.], v. 67, n. 4, p. 100-107, oct. 2018. ISSN 2663-2276. Available at: <>. Date accessed: 16 jan. 2021.
Condensed Matter Physics and Materials Science Problems. NanoScience

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.