Microstructure and phase relationships of cobalts nanocrystals obtained by severe plastic deformation

Authors

  • L.A. Gabdrakhmanova Bashkortstan State University, Russia, Ufa
  • K.M. Mukashev Al-Farabi Kazakh National University, Kazakstan, Almaty
  • A.D. Muradov Al-Farabi Kazakh National University, Kazakstan, Almaty
  • F.F. Umarov Kazakh-British Technical University, Kazakhstan, Almaty
  • G.Sh. Yar-Mukhamedova IETP, Al-Farabi Kazakh National University, Kazakhstan, Almaty
        89 28

Keywords:

кобальт, қарқынды пластикалық деформация, наноқұрылым, Брэгг-Брентано әдісі, жасыту, қайтару, рекристаллизация, құрылымдық түрлену

Abstract

Nanostructured cobalt samples were obtained by method of severe plastic deformation by torsion. The high quasi-hydrostatic pressure in the working region (up to 8 GPa ) was created at installation of Bridgman anvil type. The anvils were made of tungsten carbide. he method allows to obtain the samples of high purity without pores and impurities. To carry out of X-ray studies, a DRON-7 diffractometer with cobalt radiation was used. X-ray analysis was performed according to the Bragg-Brentano method. For phase analysis the Kα lines were used. The sizes of nanocrystalline cobalt reached about 25 ¸ 50 nm. It is established that during low-temperature annealing a reset occurs in the structure of cobalt. Annealing above 3000C leads to recrystallization of its structure. Derived by severe plastic deformation by torsion nanocrystalline cobalt after heating above the phase transition temperature and cooling below this temperature retains the high-temperature fcc structure. It is shown that the nature of the hcp-fcc delayed transition can be connected with a sizes changes and a strained state of crystallites forming nanocrystalline cobalt.

References

1 R.Z. Valiev, Nanostrukturnye materialy, poluchennye intensyvnoi plasticheskoi deformaciey, (Moscow, Logos, 2000), 272 p. (in Russ).

2 H. Gleiter, Acta Mater., 48, 1-29 (2000).

3 R.A. Andrievskiy and A.V. Ragulya, Nanostrukturnye materialy, (Moscow, Akademia, 2005), 192 p. (in Russ).

4 J. Ribbe, D. Baither, G. Schmitz and S.V. Divinski, Phys. Rev. Lett. 102, 165501 (4p) (2009).

5 A.F. Korshak, R.A. Chushkina, Yu.A. Shapavalov and P.V. Mateychenko, FMM, 112 (1) 75-84 (2011). (in Russ).

6 G.P. Graboveckaya, I.V. Ratochka, Yu.R. Kolobov and L.N. Pushkareva, FMM, 83 (3), 112-116 (1997) (in Russ).

7 I.V. Khomskaya, V.I. Zeldovich, A.E. Kheyfec, N.Yu. Frolova, V.P. Dyakina and V.A. Kazancev, FMM, 111 (4), 383-390 (2011) (in Russ).

8 G.F. Korznikova, Kh.Ya. Mulyukov, I.Z. Sharipov and L.A. Syutina, J. of Magnetism and Magnetic Materials, 203, 178-180 (1999).

9 R.K. Islamgaliev, K. Pekala, M. Pekala and R.Z. Valiev, Phys. Stat. Sol. (a), 162, 559-566 (1997).

10 S. Vidya, S. Solomon and J.K. Thomas, Phys. Stat. Sol. (а), 209, 6, 1067-1074 (2012).

11 Y. Baojie, Y. Guozhen, X. Xixiang, Y. Jeffrey and G. Subhendu, Phys. Stat. Sol. (а), 207 (3), 671-677 (2010).

12 A.C. Frank, F. Stowasser, C.R. Miskys, O. Ambacher, M. Giersig and R.A. Fischer, Phys. Stat. Sol. (а), 165, 239-243 (1998).

13 K. Smardz, L. Smardz, M. Jurczyk and E. Jankowska, Phys. Stat. Sol. (а), 196 (1), 263-266 (2003).

14 I.G. Brodova, E.V. Shorokhova, I.G. Shirinkina, I.N. Jgilev, T.I. Yablonskikh, V.V. Astafiev and O.V. Antonova, FMM, 105 (6), 630-637 (2008). (in Russ).

15 V.M. Anandakumar and M.A. Khadar, Phys. Stat. Sol. (а), 205 (11), 2672-2672 (2008).

16 A. Bienkowski, T. Kulik, R. Szewczyk and J. Ferenc, Phys. Stat. Sol. (a), 201 (15), 3305-3308 (2004).

17 G.Ya. Akimov, S.Yu.Prilipko, Yu.F.Pevenko and V.M.Timchenko, FTT, 51 (4), 727-728 (2009) (in Russ).

18 E. Thirumal, D. Prabhu, K. Chattopadhyay and V. Ravichandran, Phys. Stat. Sol. (a), 207 (11), 2505-2510 (2010).

19 Karimpoor Amir A. Mechanical properties of bulk nanocrystalline hexagonal cobalt electrodeposits: а thesis submited in confoirmity with the requirements for the degree of master of applied science graduate, (Canada, 2001), 112 p.

20 Kh.Ya. Mulyukov, Magnitnye svoistva magnitouporyadochennykh metallov i splavov s submikroskopicheskoi strukturoi. Diss.d-ra tekhn.nauk: 01.04.07.Ufa.1998, 274 p. (in Russ).

21 R.A. Andrievskiy, Uspekhi khimi, 71 (10), 967-981 (2002). (in Russ).

22 B.S. Bokshtein, G.D. Breze, P.V. Kurkin and L.I. Trusov, Izvestya VUZov. Chernaya metallurgya, 1, 49-53 (2004). (in Russ).

23 V.F. Korshak, Yu.A. Shanovalov, P.V. Mateichenko and I.A. Danilina, Metallofizika. Noveishie tekhnologyi, 30 (3), 385-396 (2008). (in Russ).

24 Yu.R. Kolobov and R.Z. Valiev Zernogranichnaya diffuzia i svoistva nanostrukrurnykh materyalov, (Novosibirsk: Nauka, 2001), 232p. (in Russ).

25 J. Cizek, I. Prochazka, R. Kuzel and R. Islamgaliev, Mondtsh. Chem., 133 (6), 873-887 (2002).

Downloads

Published

2019-06-25

Issue

Section

Condensed Matter Physics and Materials Science Problems. NanoScience