Experimental study of Λ(1405) via the d(K- ,πΣ) reaction at J-PARC K1.8BR

Authors

  • Zh. Omar Al-Farabi Kazakh National University, Kazakstan, Almaty

DOI:

https://doi.org/10.26577/rcph-2019-i2-6
        40 30

Keywords:

kaon,E31, invariant mass spectrum, Chiral Unitary model.

Abstract

The Λ(1405) baryon resonance plays an outstanding role in various aspects of hadron and nuclear physics. It has been considered that the Λ(1405) resonance is generated by the attractive interaction of the antikaon and the nucleon as a quasi-bound state below its threshold decaying into the πΣ channel. Thus, the structure of Λ(1405) is closely related to KbarN interaction. In this paper, after reviewing the basic properties of the Λ(1405) resonance and introduction to the experiment, which is performed at the K1.8BR beamline in the Hadron Experimental Hall of J-PARC, Tokai, Japan in January and February 2018, we introduce the spectral shapes which are taken by the data analysis. We have finished a beam time and data taking for the second run of E31. In the second run, we could increase the statistics several times. Based on the second run data, we analyzed the Σ+π- and Σ-π+ invariant mass spectra in the d(K-, Σ+π-)"n" and d(K-, Σ-π+)"n" reactions, respectively, where "n" is clearly identified in the missing mass spectrum of each reaction. Also, we considered the background events to estimate the sideband and get the correct peak structure of Λ(1405).

We summarize the recent progress in the investigation of the Λ(1405) structure and discuss the future perspective of the physics of the Λ(1405) resonance.

References

1 R.H. Dalitz, S.F. Tuan, Phys. Rev. Lett. 2, 425 (1959).

2 M.H. Alston, et al., Phys. Rev. Lett. 6, 698–702 (1961).

3 K. Nakamura et al (Particle Data Group), J. Phys. G: Nucl. Part. Phys., 37, 075021 (2010).

4 N. Isgur, G. Karl, Phys. Rev. D, 18, 4187 (1978).

5 R.H. Dalitz, T.C. Wong, G. Rajasekaran, Phys. Rev. G, 153, 1617–1623 (1967).

6 K.A. Oluve and Particle Data Group, Chin. Physics C 38, 090001 (2014).

7 C. Amsler et al., Phys. Lett. B667, 1 (2008).

8 R.H. Dalitz and A. Deloff, J. Phys. G17, 289 (1991).

9 R.J. Hemingway, Nucl. Phys. B253, 742-752 (1985).

10 A.W. Hendry, D.B. Lichtenberg, Prog. of Phys., 33 (3), 139-231 (1985).

11 S. Hirenzaki, Y. Okumura, H. Toki, E. Oset, and A. Ramos, Phys. Rev. C 61, 055205 (2000).

12 D. Jido et al. Nuclear Phys. A 725 181 (2003).

13 M. Niiyama et al., Phys. Rev. C78, 035202 (2008).

14 O. Braun et al., Nucl. Phys. B129, 1-17 (1977).

15 M.Iwasaki et al, Phys.Rev.Lett 78, 3067 (1997).

16 S. Piano, The search for bound kaonic states in nuclei, experimental status and theoretical predictions, INFN sez. Trieste, Hadron 07 - LNF - 11/10/2007

17 Y. Akaishi and T. Yamazaki, Phys. Rev. C65, 044005 (2002); Y. Akaishi and T. Yamazaki, Phys. Rev. C76, 045201 (2007).

18 T. Hyodo, D. Jido, and A. Hosaka, Phys. Rev. Lett. 97, 192002 (2006); T. Hyodo, D. Jido and A. Hosaka, Phys. Rev. D75, 034002 (2007).

19 T. Hyodo and A. Weise, Phys. Rev. C77, 035204 (2008).

20 H. Noumi et al. J-PARC E31 proposal. http://jparc/researcher/Hadron/en/pac_0907/pdf/Noumi.pdf

21 H. Noumi et al. Proposal for the J-PARC 50 GeV Proton Synchrotron. Spectroscopic study of hyperon resonances below KbarN threshold via the (K-n) reaction on Deuteron.

22 D. Jido, E. Oset, and T. Sekihara, The European Physical Journal A 42, P.257, (2009); D. Jido, private communication, 2009.

23 H. Noumi et al.: J-PARC E31 proposal. http://jparc/researcher/Hadron/en/pac_0907/pdf/Noumi.pdf

24 S. Kawasaki et al., Proc. of the 14th Intern. Conf. on Meson-Nucleon Physics and the Structure of the Nucleon (MENU2016).

25 M. Iwasaki, T. Nagae et al., J-PARC E15 proposal. http://j-parc.jp/NuclPart/pac0606/pdf/p15-Iwasaki.pdf

Downloads

Published

2019-06-24

Issue

Section

Theoretical Physics. Nuclear and Elementary Particle Physics. Astrophysics