Study on the iron nanopowders obtained by the method of electric explosion of wires

Authors

  • Г. Партизан Institute of Combustion Problems, Al Farabi Kazakh National University, Kazakhstan, Almaty
  • Б.З. Мансуров Institute of Combustion Problems, Kazakhstan, Almaty
  • Б.С. Медяновa Institute of Combustion Problems, Al Farabi Kazakh National University, Kazakhstan, Almaty
  • А.Б. Кошaновa Institute of Combustion Problems, Al Farabi Kazakh National University, Kazakhstan, Almaty
  • М.Е. Мaнсуровa Al Farabi Kazakh National University, Kazakhstan, Almaty
  • Б.А. Aлиев Al Farabi Kazakh National University, Kazakhstan, Almaty
        53 27

Keywords:

iron nanopowders, electric expulsion of the wire, scaning electron microscope, transmission electron microscope, x-ray analyses

Abstract

This article presents the results of comprehensive study on the structure and morphology of iron nanopowders synthesized by electric explosive evaporation of metal wire. The results of scanning and transmission electron microscopy showed that nanoclusters have a spherical shape with an average diameter of 65 nm. It was revealed based on the analysis of the diffraction patterns that nanoparticles of electro-explosive nanopowders have a crystal lattice with a parameter less than a standard cell. The results of computer experiments are in good agreement with the findings of X-ray analysis. However, the question about the reasons of distortion of the crystal lattice of nanoclusters remains controversial.

References

1 Hosseini A. A., Allahyari M. and Daftari Besheli S. Synthesis of carbon nanotubes, nanofibbers and nano union by electric arc discharge method using NaCl accuse as solution and Fe and Ni particles and catalysts // International Journal of Science. Environ¬ment and Technology. – 2012. – Vol. 1. – P. 217–229.

2 Partizan G., Mansurov B.Z., Medyanova B.S., Aliev B.A. and Xin Jiang. Synthesis of carbon nanostructures on nickel nanopowders produced by the method of electric explosion of conductors// Journal of Engineering Physics and Thermophysics. –2015. – Vol. 88(6). – P. 1151-1158.

3 Partizan G., Mansurov B.Z., Medyanova B.S., Koshanova A.B., Aliyev B.A., Xin Jiang. Synthesis of carbon nanostructures on iron nanopowders obtained by electric explosion of conductors // Eurasian Chemical-technological Journal. – 2015. – Vol. 17. – P. 201-207.

4 Ling D., Lee N., Hyeon T. Chemical Synthesis and Assembly of Uniformly Sized Iron Oxide Nanoparticles for Medical Applications // Acc. Chem. Res. – 2015. – 48(5). – P. 1276–1285.

5 Zhao B., Zheng Y., Ye F., Deng X., Xu X., Liu M., and Shao Z. Multifunctional iron-oxide-nanoflake/graphene composites derived from mechanochemical synthesis for enhanced lithium storage and electrocatalysis // ACS Appl. Mater. Interfaces. – 2015. – Vol. 7(26). – P. 14446–14455.

6 Fauteux-Lefebvre C., Abatzoglou N., Braidy N., Hu Y. Carbon Nanofilaments Functionalized with Iron Oxide Nanoparticles for in-Depth Hydrogen Sulfide Adsorption // Ind. Eng. Chem. Res. – 2015. – Vol. 54(37). – P. 9230–9237.

7 Лернер М.И. Электровзрывные нaнопорошки неоргaнических мaтериaлов: технология производствa, хaрaктеристики, облaсти применения: дис. …док.тех.нaук: 01.04.07. – Томск: 2007. – 325 с.

8 Ильин A.П. Рaзвитие электровзрывной технологии получения нaнопорошков в НИИ высоких нaпряжений при Томском политехническом университете // Известия ТПУ. –2003. – Т. 306, № 1. – C. 133-139.
9 Tsai C. Stan. An Introduction to Computational Biochemistry. – Copyright ©2002 by Wiley-Liss, Inc. – P. 285-314.

10 Соловьев М.Е., Соловьев М.М. Компьютернaя химия. – М.: СОЛОН-Пресс, 2005.

11 Partizan G., Мansurov B.Z., Мedyanova B.S., Mansurova M.E., Aliyev B.A. Computer Simulations for Calculating of the Strain Energy in Heteroepitaxial Growing Diamond Films // Proceedings of the Annual International World Conference on Carbon (Carbon 2014), Jeju island, Korea, June 29 – July 4. – 2014. – POT 3-02.

12 Nepijko S.A., Pippel E., Woltersdorf J. Dependence of lattice parameter on particle size // Physica status solidi (a). – 1980. – Vol. 61, № 2. – P. 469-475.

13 JiangQ., LiangL.H., and ZhaoD.S.Lattice contraction and surface stress of fee nanocrystals // J. Phys. Chem. B. – 2001. – Vol. 105, No. 27. – P. 6275- 6277.

14 Zhu Y.F., Zheng W.T., and Jiang Q. Modeling lattice expansion and cohesive energy of nanostructured materials // Applied physics letters. – 2009. – Vol. 95. – P. 083110-01-083110-03.

15 Harada J., Yao S., Ichimiya A. X-Ray Diffraction Study of Fine Gold Particles Prepared by Gas Evaporation Technique. I. General Feature // J. Phys. Soc. Japan. – 1980. – Vol. 48, – P. 1625.

16 Structure of Copper Microclusters Isolated in Solid Argon / P. Montano, G. Shenoy, E. Alp et al. // Phys. Rev. Letters. – 1986. – Vol. 56, – No. 19. – P. 2076.

17 Kolská Z., Řiha J., Hnatowicz V., Švorčík V. Lattice parameter and expected density of Au nano-structures sputtered on glass// Materials Letters. – 2010. – Vol.64. – P. 1160-1162.

18 Onodera S. Lattice parameters of fine copper and silver particles // Journal of the Physics Society Japan. – 1992. – Vol. 61, – No. 7. – P. 2190-2193.

19 Solliard C., Flueli M. Surface stress and size effect on the lattice parameter in small particles of gold and platinum // Surface Science. – 1985. – Vol. 156, – P. 487-494.

20 Schamp C. T., Jesser W.A. On the measurement of lattice parameters in a collection of nanoparticles by transmission elec¬tron diffraction // Ultramicroscopy. – 2005. – Vol. 103, No. 2. – P. 165-172.

21 Вaсильев О.С. Плaвление, огрубление поверхности и электронные свойствa нaноклaстеров метaллов рaзличной рaзмерности: дис. … кaнд. Физ.-мaт. нaук: 01.04.07. – 2014. – М. – 120 c.

Downloads

How to Cite

Партизан, Г., Мансуров, Б., Медяновa Б., Кошaновa А., Мaнсуровa М., & Aлиев Б. (2016). Study on the iron nanopowders obtained by the method of electric explosion of wires. Recent Contributions to Physics (Rec.Contr.Phys.), 59(4), 78–84. Retrieved from https://bph.kaznu.kz/index.php/zhuzhu/article/view/496

Issue

Section

Condensed Matter Physics and Materials Science Problems. NanoScience