Heat and mass transfer in combustion of coal dust into the combustion chamber of the power boiler BKZ-75 of Shahtinskaya TPP
Keywords:
numerical simulation, combustion chambers, pulverized coal, thermal characteristics, temperature, aerodynamics, heat transferAbstract
The presented work is devoted to the processes of heat and mass transfer, which occur when burning of pulverized coal in the combustion chamber of the existing energetic boiler BKZ-75 of the Shakhtynskaya TPP and applied to such processes methods of 3D-computer simulation. Research which was conducted in this paper, allow determining the basic patterns of distribution of aerodynamic and heat-exchanging characteristics in all volume of the combustion chamber of the boiler BKZ-75 of Shakhtynskaya TPP and on an output from it. In this paper has been compared of configurations by burner devices of the combustion chamber in the following cases: 1) are used direct-flow slot-hole torches (the basic mode); 2) vortex burner with a swirling of aero mix and their inclination to the center a symmetry of a boiler by 30 degrees. In addition, conducted in this paper the researches allowed determining the influence of emergency stopping of supply of a coal dust in burners on the main characteristics of the combustion chamber.
References
2. Askarova A.S., Karpenko E.I., Lavrishcheva Y.I., Messerle V.E. et al. Plasma-supported coal combustion in boiler furnace // IEEE Transactions on Plasma Sci. 2007. Vol. 35, No. 6. P. 1607-1616.
3. Lockwood F., Shah N. An improved flux model for calculation of radiation heat transfer in combustion chambers // ASME–Paper. Salt Lake City. 1976. P.2–7.
4. Askarowa A.S., Buchmann M.A. Structure of the flame of fluidized-bed burners and combustion processes of high-ash coal // 18th Dutch-German Conf. on Flames, Germany, 1997. Vol. 1313. P. 241–244.
5. Leithner R. Energy conversion processes with intrinsic CO2 separation // Transactions of the Society for Mining, Metallurgy and Exploration. 2005. Vol. 18. P. 135-145.
6. Müller H. Numerische Berechnung dreidimensionaler turbulenter Strömungen in Dampferzeugern mit Wärmeübergang und chemischen Reaktionen am Beispiel des SNCR-Verfahrens und der Kohleverbrennung // Fortschritt-Berichte VDI-Verlag. 1992. Vol. 6, No. 268. 158 p.
7. Bolegenova S.A., Bekmukhamet A., Maximov V. et al. Numerical experimenting of combustion in the real boiler of CHP // Intern. J. of Mechanics. 2013. Vol. 7. Р. 343–352.
8. Bekmukhamet A., Bolegenova S.A., Beketayeva M.T. et al. Numerical modeling of turbulence characteristics of burning process of the solid fuel in BKZ-420-140-7c combustion chamber // Int. J. of Mechanics. 2014.Vol. 8. P. 112–122.
9. Gorokhovski M., Chtab-Desportes A., Voloshina I. et al. Stochastic simulation of the spray formation assisted by a high pressure // 6-th Intern. Symposium on Multiphase Flow, Heat Mass Transfer and Energy Conversion. Book Series: AIP Conference Proceedings. 2010. Vol. 1207. P. 66–73.
10. Vockrodt S., Leithner R., Schiller A., et al. Firing technique measures for increased efficiency and minimization of toxic emissions in Kasakh coal firing // 19th German Conf. on Flames, Germany, 1999. Vol. 1492. – P. 93-97.
11. De Marco A., Lockwood F. A new flux model for the calculation of radiation furnaces // Italian Flame Days. Sanremo. 1975. P.1–13.
12. Askarova A., Karpenko E., Messerle V. et al. Plasma enhancement of combustion of solid fuels // J. of High Energy Chemistry. 2006. Vol. 40, Issue 2. P. 111–118.
References
1. A. Askarova, S. Bolegenova, V. Maximov, M. Beketayeva, P. Safarik, J. of Thermal Science, 24(3), 275–282, (2015).
2. A.S. Askarova, E.I. Karpenko, Y.I. Lavrishcheva, V.E. Messerle et al., IEEE Transactions on Plasma Sci, 35(6), 1607-1616, (2007).
3. F. Lockwood, N. Shah, ASME–Paper. Salt Lake City, 2–7, (1976).
4. A.S. Askarowa, M.A. Buchmann, 18th Dutch-German Conf. on Flames, Germany, 1313, 241–244, (1997).
5. R. Leithner, Transactions of the Society for Mining, Metallurgy and Exploration, 18, 135-145, (2005).
6. H. Müller, Fortschritt-Berichte VDI-Verlag, 6(268), 158, (1992).
7. S.A. Bolegenova, A. Bekmukhamet, V. Maximov et al., Intern. J. of Mechanics, 7, 343–352, (2013).
8. A. Bekmukhamet, S.A. Bolegenova, M.T. Beketayeva et al., Int. J. of Mechanics, 8, 112–122, (2014).
9. M. Gorokhovski, A. Chtab-Desportes, I. Voloshina et al., 6-th Intern. Symposium on Multiphase Flow, Heat Mass Transfer and Energy Conversion. Book Series: AIP Conference Proceedings, 1207, 66–73, (2010).
10. S. Vockrodt, R. Leithner, A. Schiller, et al., 19th German Conf. on Flames, Germany, 1492, 93-97, (1999).
11. A. De Marco, F. Lockwood, Italian Flame Days. Sanremo, 1–13, (1975).
12. A. Askarova, E. Karpenko, V. Messerle et al., J. of High Energy Chemistry, 40(2), 111–118, (2006).