IR spectrometric studies of glass transition of freon CF3-CFH2

Authors

  • A.K. Shinbayeva IETP, Al Farabi Kazakh National University, Kazakhstan, Almaty
  • A.U. Aldiyarov IETP, Al Farabi Kazakh National University, Kazakhstan, Almaty
  • A.S. Drobyshev IETP, Al Farabi Kazakh National University, Kazakhstan, Almaty
  • A.E. Nurmukan IETP, Al Farabi Kazakh National University, Kazakhstan, Almaty

Keywords:

freon, glass transition, IR spectra

Abstract

IR spectroscopic studies of structural-phase transformations in cryocondensed Freon films 134a were carried out. The investigations were carried out in the temperature range 16-100 K. Was discovered, that freon cryofilms 134a, formed at T = 16K, under heating in the temperature range from 70 to 90 K undergo multiple structural transformations of various nature. It is concluded that at a temperature of Tg = 72 K, a transition of the glassy state to a supercooled liquid (G-SCL) takes place. At a temperature near T = 78 K, crystallization of SCL into the state of an orientationally disordered plastic crystal begins. At a temperature Ttrans = 80 K, a second quasi-glass transition occurs from the state of the orientation glass to a plastic crystal with an ordered rotational subsystem. In the temperature range 83-85 K, a plastic crystal-monoclinic crystal phase transition is realized.

References

1. K.L. Kearns, S.F. Swallen, M.D. Ediger, T.Wu and L. Yu, J. Chem. Phys.127(15), 154702 (2007). https://doi.org/10.1063/1.2789438

2. M.A. Satorre, M. Domingo, C. Millan, R. Luna, R. Vilaplana and C. Santonja, Planet. Space Sci. 56, 1748-1752, (2008) https://doi.org/10.1016/j.pss.2008.07.015

3. A. Perry Gerakines and L. Reggie Hudson, Astrophysical Journal Letters, 805, 2, L20, (2015) DOI: 0.1088/2041-8205/805/2/L20

4. A. Aldiyarov, A. Drobyshev, D. Sokolov and A. Shinbayeva, JLTP 187, 742 (2017)

5. R.L. Hudson, M.J. Loeffler and P.A. Gerakines, J. Chem. Phys. 146, 024304 (2017) https://doi.org/10.1063/1.4973548

6. J.J. Harrison, J. of Quantitative Spectroscopy & Radiative Transfer 151, 210-216 (2015). https://doi.org/10.1016/j.jqsrt.2014.09.023

7. T. Hama and N. Watanabe, Chem. Rev. 113, 8783 (2013)

8. G. Mulas, G.A. Baratta, M.E. Palumbo and G. Strazzulla, Astron. Astrophys. 333, 1025-1033 (1998)

9. Bohn R.B., Sandford S.A., Allamandola L.J. and Cruikshank D.P., Icarus 111, 151 (1994)

10. W. M. Grundy, B. Schmitt and E. Quirico, Icarus 155, 486-496 (2002). https://doi.org/10.1006/icar.2001.6726

11. A. Aldiyarov, M. Aryutkina, A. Drobyshev, and at al, Low. Temp. Phys. 37, 524 (2011). https://doi.org/10.1063/1.3622633

12. Y.Z. Chua, M. Tylinski, S. Tatsumi, M.D. Ediger and C. Schick, J. Phys. Chem. 144, 244503 (2016) https://doi.org/10.1063/1.4954665

13. W. Zhang, C.W. Brian, and L. Yu, J. Phys. Chem. B 119(15), 5071-5078 (2015). DOI: 10.1021/jp5127464

14. S.F. Swallen, K. L. Kearns, M. K. Mapes, Y. S. Kim, R. J. McMahon, M. D. Ediger, T. Wu, L. Yu, and S. Satija, Science 315(5810), 353 (2007). DOI: 10.1126/science.1135795

15. S.L.L. M. Ramos, A.K. Chigira, and M. Oguni, J. Phys. Chem. B 119(10), 4076-4083 (2015). DOI: 10.1021/jp5109174

16. A.D. Lopata and Durig, J.R.J. Raman Spectrosc. 6, 61 (1977)№ https://doi.org/10.1002/jrs.1250060203

17. L. Xu, A. Andrews, R. Cavanagh, G. Fraser, K. Irikura, F. Lovas, J. Grabow, W. Stahl and M. Crawford Smalley. J. Phys. Chem. A 101, 2288-2297 (1997). DOI: 10.1021/jp9640383

18. A. Drobyshev, A. Aldiyarov, A. Nurmukan, D. Sokolov and A. Shinbayeva, ФНТ 43 (5), (2018). (in press). (in Russ)

19. A. Aldiyarov, M. Aryutkina and A. Drobyshev, Low Temp. Phys. 37 (6), 524 (2011) https://doi.org/10.1063/1.3622633

20. A. Drobyshev, K. Abdykalykov and A. Aldiyarov, Low Temp. Phys. 33 (8), 699 (2007). https://doi.org/10.1063/1.2746844

21. M. Brunelli and A. N. FitchI, Z. Kristallogr. 217, 395 (2002). https://doi.org/10.1524/zkri.217.7.395.23638

22. L. Xu, A. Andrews, R. Cavanagh, G. Fraser, K. Irikura, F. Lovas, J. Grabow, W. Stahl and M. Crawford, Smalley, J. Phys. Chem. A 101, 2288-2297 (1997). DOI: 10.1021/jp9640383

23. A. Aldiyarov, M. Aryutkina, A. Drobyshev, M. Kaikanov, and V. Kurnosov, Low Temp. Phys. 35 (4), 251 (2009). https://doi.org/10.1063/1.3114588

24. M.D. Ediger, C.A. Angell and Sidney R. Nagel, J. Phys. Chem. 100, 13200-13212 (1996). DOI: 10.1021/jp953538d

25. V. Petrenko and R. Whitworth, Physics of Ice, (Oxford Univ. Press Inc., NY, 1999). DOI:10.1093/acprof:oso/9780198518945.001.0001

Downloads

Published

2018-03-24

Issue

Section

Condensed Matter Physics and Materials Science Problems. NanoScience