The creation of visualization system for dynamics of dusty plasma particles on the basis of OpenGL

Authors

  • S.K. Kodanova Al-Farabi Kazakh National University, Kazakstan, Almaty
  • Т.S. Ramazanov Al-Farabi Kazakh National University, Kazakstan, Almaty
  • K.N. Dzhumagulova Al-Farabi Kazakh National University, Kazakstan, Almaty
  • M.К. Issanova Al-Farabi Kazakh National University, Kazakstan, Almaty
  • G.К. Omiraliyeva Al-Farabi Kazakh National University, Kazakstan, Almaty
        67 11

Abstract

In work the program allowing in a flexible dialogue mode to investigate structural, dynamic properties of dusty plasma on the basis of a computer method of langevin dynamics is described, and also visually to watch emergence of ordered structures in dust plasma. The program is developed in language of object-oriented programming of Delphi7 with use of graphic library OpenGL. The periodic grid with the cubic cell, filled with particles is considered. Animation visually shows that the particle leaving a cell through one of sides with a particular speed, gets to other cell, but thus the same particle with the same speed enters in this cell through a counter side. The user in an interactive mode observes driving of particles in a basic cell, thereby, having an opportunity visually to estimate its trajectory and a type of a potential energy of system depending on time. Also, control which using is included in the program, shift operators, turn, a full-screen mode, scaling transforms images.

References

1. О.С. Ваулина, С.А. Храпак. Моделирование динамики сильновзаимодействующих макрочастиц в слабоионизованной плазме.// ЖЭТФ, 2001, т.119, вып. 2, с.264.

2. О.С. Ваулина, О.Ф. Петров, В.Е. Фортов, А.В. Чернышев, А.В. Гавриков и др. Экспериментальные исследования динамики макрочастиц в плазме газовых разрядов.// Физика плазмы, 2003, т.29, N8, с.698.

3. Т.С. Рамазанов, К.Н. Джумагулова. Плазменный кристалл: Новое поле деятельности на стыке физики конденсированного состояния и физики плазмы. // Вестник КазНУ, серия физическая. 2004, № 2(17), с. 139-146.

4. K.N. Dzhumagulova, T.S. Ramazanov, V.E. Messerle, S.F. Osadchy. Composition of air plasma with coal dusty particles. // PLTP. 2004. P. 9-5-103. – 5 p.

5. B. Alder, T.E. Wainwright, Phase transition for a hard sphere system // J. Chem. Phys.-1957.- Vol. 27, No. 5.- P. 1208-1209.

6. J. D. Anderson, Computational Fluid Dynamics: the basics with applications.-New York, 1995.- 563p.

7. Peter Deuflhard, Jan Hermans, Benedict Leimkuhler, Alan E. Mark, Sebastian Reich, Robert, D. Skeel. Computational Molecular Dynamics: Challenges, Methods, Ideas.- Berlin, 1997.-504p.

8. Е. Хокни, Дж. Иствуд Численное моделирование методом частиц.- Москва: Мир,1987.- 638 p.

9. Олдер Б, Фернбах С, Ротенберг М. Вычислительные методы в физике плазмы.- Москва: Мир, 1974.-111p.

10. Hansen J.P., Computer simulation of basic plasma phenomena.- Paris, 1979. 433-470p.

11. А.В. Литвинович, Язык описания графических объектов GRASP : Журнал «Нейрокомпьютеры: разработка, применение» №10 за 2012 г.: — Москва, 2012. с. 26-30.

Downloads

Published

2013-06-17

Most read articles by the same author(s)

<< < 1 2 3