Temperature dependence of the energy resolution of a gallium arsenide detector
Keywords:
neutron, alpha particle, gallium arsenide, detector, sensor, registration, characteristics, charge, collection efficiency, photolithographyAbstract
The paper presents the results of the study of the detector, made by gas-phase epitaxy technology of high purity gallium arsenide (VPE GaAs). The energy resolution of the detector is 52 KeV. For all detectors under study, the efficiency of charge collection from the longest-running particles reaches a maximum at a voltage of 60 V. At zero offset, the charge collection efficiency for alpha-particle energies from 4.8 to 7.7 MeV ranges from 74 to 58%. This data show the possibility of using the developed detectors in the particles counting mode without external offset with high collection efficiency as a sensor of recoil protons for detecting fast neutrons. Detector saves spectrometric qualities to a temperature of 110 °C while increasing the operating offset to 110-130 V. A further increase in temperature to 130 °C leads to a catastrophic degradation of detector characteristics.
References
2 B.V. Shulʼgin and et al., Novye detectornye materialy i ustroistva, (Moskva, Fizmatlit, 2009), 360 p. (in Rus.).
3 A.V. Beluchkin, Pramana, J. Phys., 71 (4), 639 (2008).
4 Y.G. Dygterev, Izv. RAN. Ser. Fiz., 66 (5), 719-722 (2002). (in Rus.).
5 A.J. Kordyasz, S.G. Strzelecka, J. Kownacki et al., Nuclear Instruments and Methods in Physics Research A 545, 716 (2005).
6 S.M. Kang, J.H. Ha, Se-H. Park et al., Progress in nuclear science and technology, 1, 282 (2011).
7 B. Zatko, F. Dubecky, P. Bohacek et al., Nuclear Instruments and Methods in Physics Research A 633, S131 (2011).
8 A. Sagatova-Perdochova, F. Dubecky, B. Zatko et al., Nuclear Instruments and Methods in Physics Research, A 576, 56 (2007).
9 A. Sagatova-Perdochova, M. Ladziansky and V. Necas, Nuclear Instruments and Methods in Physics Research, A 591, 98 (2008).
10 B. Zatko, K. Sedlackova, F. Dubecky et al., JINST, 6, C12047 (2011).
11 A. Sagatova, B. Zatko, K. Sedlackova et al., JINST, 8, C03016.
12 T. Ly Anh, A. Perdochova, V. Necas, and V. Pavlicova, Nuclear Physics B 150, 402 (2006).
13 M. Ladziansky, A. Sagatova, V. Necas et al., Nuclear Instruments and Methods in Physics Research, A 607, 135 (2009).
14 S.V. Chernykh and et al. Poluprovonikovyi detector s vnutrennim usileniem, Patent na polrznyu model RF №178710; 17.04.2018 (in Rus.).
15 S.I. Didenko, S.V. Chernykh, F.M. Baryshnikov, K.M. Mukashev and et al., Vestnic KazNPU im. Abaya, 3 (51), 147-152 (2005). (in Rus.).
16 G.I. Koltsov, S.I. Didenko, and A.V. Chernykhetal, Semiconductors, 46 (8), 1066 (2012).
17 S.I. Didenko, G.I. Koltsov, A.V. Chernykh et al., Book of Abstracts of Intern. Conf. Nuclear Science and its Application, 2012, p. 171.
18 F.M. Baryshnikov, G.I. Вritvich, A.V. Chernykh et al, Ion Implantation Technology. (2012 AIP Conf. Proc.), 1496, 50 (2012).
19 S.V. Artemov, A.G. Bazhazhin, N. Burtebaev and et al., Pribory i tekhnika experimenta, 1, 168-170 (2009). (in Rus.).
20 Q. Xu et al., Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 849, 11-15.22 21 (2017).
21 S.L. Bellinger et al., IEEE Transactions on Nuclear Science, 59 (1), 167-173 (2012).
22 N. Burtebaev, K.M. Mukashev, M. Nasyrlla and S.V. Chernykh, Poluprovodnikovye detector yadernykh izluchenii na osnove arsenide Gallia, (Almaty: Qazaq universytety, 2017), 150 p. (in Rus.).