Сравнение адронных моделей взаимодействия EPOS LHC и QGSJETII-04 при моделировании шал с использованием CORSIKA77410

Авторы

DOI:

https://doi.org/10.26577/RCPh.2024.v91.i4.a3

Ключевые слова:

Широкие Атмосферные Ливни (ШАЛ), адронное взаимодействие, энергетические спектры, космические лучи

Аннотация

В представленной статье проводится сравнительный анализ двух моделей высокоэнергетического адронного взаимодействия — EPOS LHC v3400 и QGSJET-II-04 — в сочетании с моделью низкоэнергетического взаимодействия GHEISHA 2002d (double precision) для первичных частиц (протон, кислород и железо) в диапазоне энергий 1016-1019 эВ с использованием программы CORSIKA-7.7410. Проанализированы ключевые параметры ливней, такие как глубина максимума Xmax, мюонное содержание, распределение энергии вторичных частиц и горизонтальные распределение.

Полученные результаты дают более глубокое понимание характеристик вторичных космических лучей на уровне наблюдений Тянь-Шаньской высокогорной научной станции (ТШВНС, 3340 м над уровнем моря) и могут быть использованы для планирования будущих экспериментов по исследованию стволов ШАЛ «Толчковой Установкой». Определены особенности каждой модели, проведена оценка их влияния на ключевые параметры ШАЛ, а также установлены области их наибольшей применимости для улучшения интерпретации экспериментальных данных.

В работе отражены основные принципы и характеристики, а также теоретические знания, необходимые для понимания моделируемых эффектов, определена область применения, показан процесс настройки данных и сложность вычислений моделей EPOS и QGSJET. Проведено сравнение общего количества частиц, как для протона, кислорода, так и для железа, в модели EPOS и QGSJET II.

Биографии авторов

Н.О. Ережеп, Институт ядерной физики, г.Алматы, Казахстан; Тянь-Шаньская высокогорная научная станция, г. Алматы, Казахстан

Автор-корреспондент, научный сотрудник Института ядерной физики, г.Алматы, Казахстан; Тянь-Шаньская высокогорная научная станция, г.Алматы, Казахстан; e-mail: n.yerezhep@inp.kz

Н.О. Садуев, Институт ядерной физики, г.Алматы, Казахстан

PhD, заместитель директора по научной работе Института ядерной физики; Тянь-Шаньская высокогорная научная станция, г. Алматы, Казахстан; e-mail: n.sadyev@inp.kz

О.А. Каликулов, Институт ядерной физики, г.Алматы, Казахстан

PhD, заведующий лабораторией космических лучей Института ядерной физики, г.Алматы, Казахстан; e-mail: o.kalikulov@inp.kz

М.А. Банщикова, Тянь-Шаньская Высокогорная Научная Станция, г. Алматы, Казахстан

Младший научный сотрудник лаборатории космических лучей Института ядерной физики, г.Алматы, Казахстан; e-mail: margaretbanshchicova@gmail.com

Библиографические ссылки

Heck D., Knapp J., Capdevielle J., Schatz G., Thouw T. CORSIKA: A Monte Carlo code to simulate extensive air showers (2022) Physics 9:35-40. DOI:10.5445/IR/270043064

Sandrock A. Status and prospects of the CORSIKA 8 air shower simulation framework (2023) PoS ECRS 075:1-8. DOI: 10.22323/1.423.0075

Pierog T., Karpenko Iu., Katzy J. M., Yatsenko E., Werner K. EPOS LHC: Test of collective hadronization with data measured at the CERN Large Hadron Collider (2015) Phys. Rev. 92 (3):034906. DOI: https://doi.org/10.1103/PhysRevC.92.034906

Pierog T. LHC results and High Energy Cosmic Ray Interaction Models (2013) J. Phys.: Conf. Ser. 409:012008. DOI: 10.1088/1742-6596/409/1/012008

Ostapchenko S. QGSJET-II: towards reliable description of very high energy hadronic interactions (2006) Nucl. Phys. Proc. Suppl. 151:143-146. DOI: https://doi.org/10.1016/j.nuclphysbps.2005.07.026

Ostapchenko S. Nonlinear screening effects in high energy hadronic interactions (2006) Phys. Rev. D74:01402. DOI: https://doi.org/10.1103/PhysRevD.74.014026

Ostapchenko S. Monte Carlo treatment of hadronic interactions in enhanced Pomeron scheme: QGSJET-II model (2011) Phys. Rev. D83:014018. DOI: https://doi.org/10.1103/PhysRevD.83.014018

Ostapchenko S. QGSJET-II: physics, recent improvements, and results for air showers (2013) EPJ Web Conf. 52:02001. DOI: https://doi.org/10.1051/epjconf/20135202001

Kalikulov O.A. Saduyev N.O. Study of the spatiotemporal structure of extensive air showers at high energies (2022) Journal of Instrumentation 17(41):C04014. DOI: 10.1088/1748-0221/17/04/C04014

Shaulov S. B. Method for determining angles in x-ray emulsion chambers (2019) Recent Contributions to Physics 69(2):61-70. DOI:10.26577/RCPh-2019-i2-9

Shinbulatov S.K. Study of the angular spectra of HADRONS in X-RAY emulsion chamber (2019) 36th International Cosmic Ray Conference ICRC2019-July 24th - August 1st.

Shaulov S. B. Autonomous station for recording radiation In a thunderstorm atmosphere At the tien shan high mountain cosmic-ray station (2019) Recent Contributions to Physics 70(3):13-21. DOI: https://doi.org/10.26577/RCPh-2019-i3-2

Kalikulov O.A. Прототип установки временных детекторов для исследования оси прихода ШАЛ (2021) Вестник КазНУ. Серия Физическая 79(4):4-9. DOI: https://doi.org/10.26577/RCPh.2021.v79.i4.01

Antoni T. The cosmic-ray experiment KASCADE (2003) Nucl. Instr. Meth. A 513:490-510. DOI: https://doi.org/10.1016/S0168-9002(03)02076-X

Pierog T. EPOS LHC: Test of collective hadronization with data measured at the CERN Large Hadron Collider (2015) Phys. Rev. C 92:034906. DOI: https://doi.org/10.1103/PhysRevC.92.034906

Ostapchenko S. LHC data on inelastic diffraction and uncertainties in the predictions for longitudinal extensive air shower development (2014) Phys. Rev. D 89:074009. DOI: https://doi.org/10.1103/PhysRevD.89.074009

F. Riehn, Engel R., Fedynitch A., Gaisser K, S. Todor A new version of the event generator sibyll Proceedings of Science, (2015), 30-July-2015, 558

Riehn, F., Engel, R., Fedynitch, A., Gaisser, T.K., Stanev, T. Charm production in SIBYLL EPJ Web of Conferences, 2015, 99, 12001 https://doi.org/10.1051/epjconf/20159912001

Riehn F. The hadronic interaction model SIBYLL 2.3c and Feynman scaling Proc. 35th Int. Cosmic Ray Conf., Bexco, Busan (Korea), (2017) contr. 301. DOI: https://doi.org/10.48550/arXiv.1709.07227

Engel R. Hadronic interaction model sibyll 2.3d and extensive air showers (2019) Phys. Rev. D 102:063002. DOI: https://doi.org/10.1103/PhysRevD.102.063002

Roesler S., Engel R., Ranft J., The Monte Carlo event generator DPMGET-III Proc. 2000 Conf., Lisbon (Portugal) Oct. 23-26, 2000.

Kling A. (2001) Springer (Berlin) 1003

Fedynitch A., Engel R. Nuclear model developments in FLUKA (2015) Nuclear Reaction Mechanisms 14:291

Werner K. Strings, pomerons and the VENUS model of hadronic interactions at ultrarelativistic energies (1993) Phys. Rep. 232:87-299. DOI: https://doi.org/10.1016/0370-1573(93)90078-R

Drescher H.J., Hladik M., Ostapchenko S., Pierog T., Werner K. Parton-based Gribov–Regge theory (2001) Phys. Rep. 350:93-289. DOI: https://doi.org/10.1016/S0370-1573%2800%2900122-8

Fass`o A., Ferrari A., Roesler S. The physics models of FLUKA: status and recent development (2003) Computing in High Energy and Nuclear Physics 2003 Conference (CHEP2003) C0303241:1–5. DOI: https://doi.org/10.48550/arXiv.hep-ph/0306267

Fesefeldt H. The e/h ratio and energy resolution of hadron calorimeters Nuclear Inst. and Methods in Physics Research, A Том 263, Выпуск 1, Страницы 114 - 135 (1988)

Bass S.A. Microscopic models for ultrarelativistic heavy ion collisions (1998) Prog. Part. Nucl. Phys. 41:225-369. DOI: https://doi.org/10.1016/S0146-6410(98)00058-1

Bleicher M. Relativistic hadron-hadron collisions in the ultra-relativistic quantum molecular dynamics model (1999) J. Phys. G: Nucl. Part. Phys. 25:1859. DOI: 10.1088/0954-3899/25/9/308.

Kamata K., Nishimura J. The Lateral and the Angular Structure Functions of Electron Showers (1958) Suppl. Progr. Theoret. Phys. 6:93-155. DOI: https://doi.org/10.1143/PTPS.6.93

Nelson W.R., Hirayama H. (1985) Report SLAC 265, Stanford Linear Accelerator Center.

Yerezhep N.O., Sadykov T.K., Burtebayev N., Saduyev N.O. Comparison of GHEISHA QGSJET and UrQMD EPOS Interaction Models to Compare Experiments with Observation Parameters of TSHSS (2023) Acta Physica Polonica B, Proceedings Supplement 16:A5.

Gribov V.N. A reggeon diagram technique (1968) Sov. Phys. JETP 26:414.

Gribov V.N. Glauber corrections and the interaction between high-energy hadrons and nuclei (1969) Sov. Phys. JETP 29:483.

Kalmykov N.N., Ostapchenko S.S., Pavlov A.I. Quark-gluon-string model and EAS simulation problems at ultra-high energie Nucl. Phys. B (Proc. Suppl.) V 52 Is 3, p. 17-28 (1997) https://doi.org/10.1016/S0920-5632(96)00846-8

Evans L., Bryant P. LHC Machine (2008) JINST 3:S08001. DOI: 10.1088/1748-0221/3/08/S08001

The ALICE Collaboration, Aamodt K. The ALICE experiment at the CERN LHC (2008) Journal of Instrumentation 3:S08002. DOI: 10.1088/1748-0221/3/08/S08002

The CMS Collaboration, Chatrchyan S. The CMS experiment at the CERN LHC (2008) Journal of Instrumentation 3:S08004. DOI: 10.1088/1748-0221/3/08/S08004

The ATLAS Collaboration, Aad G. The ATLAS Experiment at the CERN Large Hadron Collider (2008) Journal of Instrumentation 3:S08003. DOI: 10.1088/1748-0221/3/08/S08003

Van Rossum, G. Python tutorial (1995) Technical Report CS-R9526. Centrum voor Wiskunde en Informatica, Amsterdam

Brun, R., Rademakers An object oriented data analysis framework (1997) Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 389 (1-2), pp. 81-86. DOI: 10.1016/S0168-9002(97)00048-X

Chabin Ch. Thakuria, and K. Boruah Comparison of EPOS and QGSJET-II in EAS Simulation using CORSIKA (2012) High Energy Astrophysical Phenomena. DOI: https://doi.org/10.48550/arXiv.1202.3661

Как цитировать

Ережеп, Н., Садуев, Н., Каликулов, О., & Банщикова, М. (2024). Сравнение адронных моделей взаимодействия EPOS LHC и QGSJETII-04 при моделировании шал с использованием CORSIKA77410. Вестник. Серия Физическая (ВКФ), 91(4), 21–32. https://doi.org/10.26577/RCPh.2024.v91.i4.a3

Выпуск

Раздел

Теоретическая физика. Физика ядра и элементарных частиц. Астрофизика