Computer simulation of the density of the state of the NaF nanocrystal

Авторлар

  • L.N. Myasnikova Zhubanov Aktobe Regional State University, Aktobe, Kazakhstan
  • A.S. Istlyaup Zhubanov Aktobe Regional State University, Aktobe, Kazakhstan
  • D.M. Sergeyev Zhubanov Aktobe Regional State University, Begeldinov Military Institute of Air Defence Forces, Aktobe, Kazakhstan

DOI:

https://doi.org/10.26577/rcph-2019-1-1097
        121 54

Кілттік сөздер:

NaF nanocrystal, density of states, band structure, total energy, computer simulation

Аннотация

At present, various theoretical research methods are intensively used to interpret experimental results related to the study of the properties of defects in solids. Progress in this direction is possible thanks to the improvement of computer technology and the development of modern quantum chemical packages. The paper presents the results of computer simulation of the density of states and the total energy of an ideal NaF nanocrystal (Na13F14, Na4F5, Na22F23) and with the simplest point defects in various cluster compounds (Na12F13, Na21F22). Simulation of characteristics is implemented in the Atomistix ToolKit with Virtual NanoLab program in GGA (generalized gradient approximation) functionality. Objects studied are quantum dots. The results obtained may be useful in the study of nanocrystals.

Библиографиялық сілтемелер

1 Ch. Lushchik and A. Lushchik, Physics of the Solid State 60, 1487-1505 (2018).

2 K. Shunkeyev, D. Sergeyev, L. Myasnikova, A. Barmina, S. Shunkeyev, N. Zhanturina and Z. Aimaganbetova, Russian Physics Journal 57, 451-458 (2014).

3 A. Lushchik, Ch. Lushchik, E. Vasil’chenko and A.I. Popov, Low Temperature Physics, 44, 357-367 (2018).

4 K. Shunkeyev, N. Zhanturina, Z. Aimaganbetova, L. Myasnikova, A. Barmina, Sh. Sagimbaeva and D. Sergeyev, Journal of Physics: Conf. Series 1115, 052010 (2018).

5 K. Shunkeyev, N. Zhanturina, L. Myasnikova, Z. Aimaganbetova, A. Barmina, Sh. Sagymbaeva and D. Sergeyev, Low temperature physics 42, 580-583 (2016).

6 Y. Toyozawa, J. of Luminescence 12/13, 13-21 (1976).

7 M.S. Mathews, B.T. Amaechi, K. Ramalingam, R.A. Ccahuana-Vasquez, I.P. Chedjieu, A.C. Mackey and R.L. Karlinsey, Archives of oral biology 57, 525-530 (2012).

8 R.L. Whetten, Acc. Chem. Rev. 26, 49-56 (1993).

9 R.D. Beck, P.St. John, M.L. Homer and R.L. Whetten, Chemical physical letters 187, 122-128 (1991).

10 P.M.St. John, R.D. Beck and R.L. Whetten, Phys. Rev. Lett. 69, 1467-1470 (1992).

11 J. Lumeau, K. Chamma, L. Glebova and L. Glebov, Journal of Non-Crystalline Solids 405, 188–195 (2014).

12 I.S. Messaoudi, A. Zaoui and M. Ferhat, Phys. Status Solidi B, 1-6 (2014).

13 B.P. Mamula, B. Kuzmanović, M.M. Ilić, N. Ivanović and N. Novaković, Physica B: Condensed Matter 545, 146-151 (2018).

14 Cui He, Cui-E Hu, Tian Zhang, Yuan-Yuan Qi and Xiang-Rong Chen, Solid State Communications 254, 31-36 (2017).

15 Ting Liang, Wen-Qi Chen, Cui-E. Hu, Xiang-Rong Chen and Qi-Feng Chen, Solid State Communications 272, 28-32 (2018).

16 B.P. Chandra, V.K. Chandra, Piyush Jha, R.P. Patel and R.N. Baghel, Radiation Measurements 78, 9-16 (2015).

17 B.P. Chandra, Journal of Luminescence 128, 1217–1224 (2008).

18 W. Kucharczyk, Journal of Physics and Chemistry of Solids 50(7), 709-712 (1989).

19 L. Bryukvina, N. Ivanov and S. Nebogin, Journal of Physics and Chemistry of Solids 120, 133-139 (2018).

20 R. Pandey, X. Yang, J.M. Vail and J. Zuo, Solid State Communications 81(7), 549-552 (1992).

21 U. Landman, D. Scharf and J. Jortner, Physical review letters 54 (16), 1860-1863, (1985).

22 J. Hoya, J.I. Laborde, D. Richard and M. Rentería, Computational Materials Science 139, 1-7 (2017).

23 D. Kong, C. Dong, X. Wei, C. Man, X. Lei, F. Mao and X. Li, Electrochimica Acta 292, 817-827 (2018).

24 K.A. Jackson, Advances in Atomic, Molecular, and Optical Physics 64, 15-27 (2015).

25 A. Myasnikova, A. Mysovskya, A. Paklin and A. Shalaev, Chemical Physics Letters 633, 218-22, (2015).

Жүктелулер

Как цитировать

Myasnikova, L., Istlyaup, A., & Sergeyev, D. (2019). Computer simulation of the density of the state of the NaF nanocrystal. ҚазНУ Хабаршысы. Физика сериясы, 68(1), 74–80. https://doi.org/10.26577/rcph-2019-1-1097

Шығарылым

Бөлім

Физика конденсированного состояния и проблемы материаловедения. Нанонаука