Study of the electron lithography parameters by AFM

  • M.М. Myrzabekova NNLOT, Al-Farabi Kazakh National University, Almaty, Kazakhstan
  • N.R. Guseinov NNLOT, Al-Farabi Kazakh National University, Almaty, Kazakhstan
  • S.I. Zaitsev Institute of Microelectronics Technology and High-Purity Materials RAS, Chernogolovka, Russia
  • Ya.L. Shabelnikova Institute of Microelectronics Technology and High-Purity Materials RAS, Chernogolovka, Russia
  • M.M. Muratov NNLOT, Al-Farabi Kazakh National University, Almaty, Kazakhstan
  • S.R. Muradova NNLOT, Al-Farabi Kazakh National University, Almaty, Kazakhstan
  • T.B. Turarbaeva NNLOT, Al-Farabi Kazakh National University, Almaty, Kazakhstan

Abstract

The paper considers one of the methods of micro - and nano - images formation with high accuracy of process control – electronic lithography. Comparing to other nanostructuring technologies, such as photolithography in particular, electronic lithography is more versatile. This paper describes the technological processes of electron lithography on a silicon substrate using a polymer-based resist PMMA. The irradiation was carried out in the SEM chamber by electrons with an energy of 5 keV, 15 keV, 30 keV and an exposure dose of 1-10000 µС/cm2. The analysis of the obtained samples using optical and atomic force microscopy (AFM) showed the dependence of the color and the corresponding thickness of the resist on the radiation dose. The calculation of such parameters as positive and negative sensitivity and contrast was carried out on the basis of the resist thickness profiles.

References

1 S. Kratky, V. Kolarik, M. Horacek, P. Meluzin, and S. Kral, Microelectronic Engineering, 177, 30–34 (2017).

2 D.S. Salenko, Automation and software engineering, 3 (5), 68-74 (2013). (in Russ).

3 N.Zh. Takibayev, S.I. Zaitsev, V.A. Kurmangalieva, D.M. Nasirov, M.N. Takibaev, B.K. Abdykadyrov, Laboratory workshop in physics: Virtual workshop nanomaker, Nanotechnology, Thermodynamics.Textbook, (Abay KazNPU, Almaty, 2012).- 140 p. (in Russ)

4 P.J. Cegielskia, J. Boltena, J.W. Kima, F. Schlachtera, C. Nowaka, T. Wahlbrinka, A. L. Gieseckea and M. C. Lemme, Microelectronic Engineering 197, 83-86 (2018).

5 V. Nazmov, Boris Goldenberg, Physics Procedia 84, 201-204 (2016).

6 M. Mahmoodiana, H. Hajihoseinib, S. Mohajerzadeha, Morteza Fathipour, Synthetic Metals 249, 14-24 (2019).

7 Xiaoqing Shi, Stuart A. Boden, Frontiers of Nanoscience 11, 563-594 (2016).

8 Shi, X., Prewett, P., Huq, E., Bagnall, D. M., Robinson, A. P. G., & Boden, S. A., Microelectronic Engineering 155, 74–78 (2016).

9 N.R. Guseinov, M.M. Muratov, M.T. Gabdullin, R.R. Nemkayeva, M.M. Myrzabekova, Ya.L. Shabelnikova, S.I. Zaitsev, 5th Intern. Sc. Conf. "Modern Problems of Condensed Matter Physics, Nanotechnology and Nanomaterials", (Almaty, 17-18 May, 2018), p.193-194. (in Russ).

10 Scott Hector, AIP Conference Proceedings (2005), p. 359-368.

11 H.S. Kim, S. Ahn, D.W. Kim, Y.C. Kim, & S.J. Ahn, Microelectronic Engineering, 86, 2049–2052 (2009).

12 M.A. Mohammad, T. Fito, J. Chen, S. Buswell, M. Aktary, M. Stepanova, S.K. Dew, Microelectronic Engineering 87, 1104–1107 (2010).

13 M.M. Myrzabekova, S. Sarkar, G.A. Baigarinova, N.R. Guseinov, A.M. Ilyin, Physical Sciences and Technology 1, 4-9, (2014).

14 C. Vieu, F. Carcenac, A. Pepin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, H. Launois, Applied Surface Science 164, 111-117 (2000).

15 D.M. Tennant and A.R. Bleier, Reference Module in Materials Science and Materials Engineering, 1-25 (2016).

16 P. Rai-Choudhury, Handbook of Microlithography, Micromachining and Microfabrication, (SPIE, 1997), 776.

17 K. Vutova, G. Mladenov, Microelectronic Engineering 57–58, 349–353 (2001).

18 M.M. Myrzabekova, N.R. Guseinov, M.M. Muratov, M.T. Gabdullin, R. R. Nemkayeva, T. Tolkynbayeva, Ya.L. Shabelnikova, S.I. Zaitsev., Proc. 6th Intern. Conf. on Nanomaterials and Advanced Energy Storage Systems (INESS-2018) (Almaty, August, 2018), p.84.

19 J. Samàa, G. Domènech-Gila, I. Gràciac, X. Borriséc, C. Cané, S. Barthd, F. Steibe, A. Waage, J.-D. Pradesa, A. Romano-Rodríguez, Sensors and Actuators B, (2019).

20 M.A. Knyazev, S.V. Dubonos, A.A. Svintsov, S.I. Zaitsev, Microelectronic Engineering 84, 1080–1083 (2007).
Published
2019-03-30
How to Cite
MYRZABEKOVA, M.М. et al. Study of the electron lithography parameters by AFM. Recent Contributions to Physics (Rec.Contr.Phys.), [S.l.], v. 68, n. 1, p. 81-90, mar. 2019. ISSN 2663-2276. Available at: <https://bph.kaznu.kz/index.php/zhuzhu/article/view/1112>. Date accessed: 24 oct. 2020. doi: https://doi.org/10.26577/rcph-2019-1-1112.
Section
Condensed Matter Physics and Materials Science Problems. NanoScience

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.