Investigation of temperature influence on the process of reduction of graphene oxide

  • T.K. Kuanyshbekov NNLOT, Al-Farabi Kazakh National University, Almaty, Kazakhstan
  • М.А. Tulegenova NNLOT, Al-Farabi Kazakh National University, Almaty, Kazakhstan
  • G.A. Baigarinova NNLOT, Al-Farabi Kazakh National University, Almaty, Kazakhstan
  • N.R. Guseinov ННЛОТ, КазНУ им.аль-Фараби, г.Алматы, Казахстан
  • A.M. Ilyin NNLOT, Al-Farabi Kazakh National University, Almaty, Kazakhstan

Abstract

The paper presents the results of influence different temperature on reducing graphene oxide. The influence of atmosphere pressure hydrogen gas at temperatures: 150 °C, 300 °C, 500 °C, 900 °C on the structure and composition of functionalized graphene was studied. The positions and ratio of Raman peaks of graphene oxide and thermally-reduced graphene are shown. Collected SEM images of graphene oxide are demonstrates layered structure, and the elemental composition of the thermally-reduced graphene at various temperatures was determined by using EDX spectroscopy. The obtained elemental analysis results are in good agreement with the data on the mass loss of thermally-reduced graphene, which is explained by the removal of functional groups.

References

1. Ilyin A.M., Beall G.W. Computer simulation of graphene-metal composite induced by radiation // NanoTech Conference & Expo-2011. – 2011. – P. 574-576.
2. Байгаринова Г.А., Мырзабекова М.М., Тулегенова М.А., Гусейнов Н.Р., Ильин А.М. Получение и исследование новых компостных материалов полимер-графен // Вестник КазНУ, сер. физическая. - 2013. - № 4(47). - P.23-29.
3. Мырзабекова М.М., Байгаринова Г.А., Гусейнов Н.Р., Ильин А.М. Определение характера проводимости композитов на полимерной основе с наполнителями из графены и его родственных структур // Вестник КазНУ, серия физическая. - 2015. -№1(52). - С.60-66.
4. Байгаринова Г.А., Мырзабекова М.М., Гусейнов Н.Р. Изучение свойств новых полимерных композитных материалов с наполнителями из графены и его производных структур // Тезисы докл. Междунар. Конф. студентов и молодых ученых «Фараби алеми». - Алматы, 8-10 апреля 2014. - С. 177.
5. Мырзабекова М.М., Байгаринова Г.А., Гусейнов Н.Р. Восстановление и исследование оксида графена // Тезисы докл. Междунар. Конф. студентов и молодых ученых «Фараби алеми». - Алматы, 8-10 апреля 2014. - С. 200.
6. Dimiev A.M. and Tour J.M. Mechanism of Graphene Oxide Formation // ACS Nano. – 2014. – Vol 8 (3). – P.3060–3068.
7. Kuila T., Bose S., Mishra A.K., Khanra P., Kim N.H., Lee J.H. Chemical functionalization of graphene and its applications // Prog Mater Sci. – 2012. – Vol 57(7). – P.1061-105.
8. Eda G., Chhowalla M. Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics // Adv Mater. – 2010. – Vol 22(22). – P.2392–415.
9. Stankovich S., Dikin D.A., Piner R.D., Kohlhaas K.A., Kleinhammes A., Jia Y., et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. // Carbon. – 2007. – Vol 45. – P.1558–65.
10. Kaniyoor A., Baby T.T., Arockiadoss T., Rajalakshmi N., Ramaprabhu S. Wrinkled graphenes: A study on the effects of synthesis parameters on exfoliation-reduction of graphite oxide // J Phys Chem C. – 2011. – Vol 115. – P. 17660–9.
11. Sundaram R.S., Gomez-Navarro C., Balasubramanian K., Burghard M., Kern K. Electrochemical modification of graphene // Adv Mater. – 2008. – Vol 20. – P.3050–3.
12. Seung Hun Huh Thermal Reduction of Graphene Oxide // Physics and Applications of Graphene - Experiments, Dr. Sergey Mikhailov (Ed.), 2011. – P. 87-89.
13. Coats A. W., Redfern J.P., 1963. / Thermogravimetric Analysis: A Review // Analyst. – N 88 (1053). – P. 906–924 https://en.wikipedia.org/wiki/Thermogravimetric_analysis.
14. Sun P., Wang Y., Liu H., Wang K., Wu D., Xu Z., Zhu H. Structure Evolution of Graphene Oxide during Thermally Driven Phase Transformation: Is the Oxygen Content Really Preserved? // Thermal Induced Structure Evolution of Graphene Oxide. – 2014. – Vol 9, Is 11. – Р. 1-7.
15. Kumar P.V., Bardhan N.M., Tongay S., Wu J., Belcher A.M. and Grossman J.C. Scalable enhancement of graphene oxide properties by thermally driven phase transformation. // Nature chemistry. – 2014. – Vol. 6. – Р. 151-157.
16. JIa Tian-Tiana, Sun Bao-Zhenb, Lin Hua-Xianga, Li Yia, Chen Wen-Kaia. Bonding of Hydroxyl and Epoxy Groups on Graphene: Insights from Density Functional Calculations // Chinese Journal of Structural Chemistry. – 2013. – Vol 32. No. 10. – Р. 1475–1484.
17. Si Zhou & Angelo Bongiorno. Origin of the Chemical and Kinetic Stability of Graphene Oxid. // Scientific Reports. – 2013. – Vol 3: 2484. – Р. 1-6.

References
1. A.M. Ilyin, G.W. Beall, NanoTech Conference & Expo-2011, 574-576, (2011).
2. G.A. Baygarinova, M.M. Myrzabekova, M.A. Tulegenova, N.R. Guseinov, A.M. Ilyin, KazNU bulletin, Physics series, 4(47), 23-29, (2013). (in russ.)
3. M.M. Myrzabekova, G.A. Baygarinova, N.R. Guseinov, A.M. Ilyin, KazNU bulletin, Physics series, 1(52), 60-66, (2015). (in russ.)
4. G.A. Baygarinova, M.M. Myrzabekova, N.R. Guseinov, Tezisy dokl. Mezhdunarod. konferencia studentov i molodykh uchenykh “Farabi alemi”, Almaty, 8-10 aprelya 2014, 177. (in russ.)
5. M.M. Myrzabekova, G.A. Baygarinova, N.R. Guseinov, Tezisy dokl. Mezhdunarod. konferencia studentov i molodykh uchenykh “Farabi alemi”, Almaty, 8-10 aprelya 2014, 200. (in russ.)
6. A.M. Dimiev and J.M. Tour, ACS Nano, 8 (3), 3060–3068, (2014).
7. T. Kuila, S. Bose, A.K. Mishra, P. Khanra, N.H. Kim, J.H. Lee, Prog Mater Sci., 57(7), 1061-105, (2012).
8. G. Eda, M. Chhowalla, Adv Mater., 22(22), 2392–415, (2010).
9. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, et al., Carbon, 45, 1558–65, (2007).
10. A. Kaniyoor, T.T. Baby, T. Arockiadoss, N. Rajalakshmi, S. Ramaprabhu, J Phys Chem C, 115, 17660–9, (2011).
11. R.S. Sundaram, C. Gomez-Navarro, K. Balasubramanian, M. Burghard, K..Kern, Adv Mater., 20, 3050–3, (2008).
12. Seung Hun Huh, Thermal Reduction of Graphene Oxide, Physics and Applications of Graphene - Experiments, Dr. Sergey Mikhailov (Ed.), 2011, 87-89.
13. A.W. Coats, J.P. Redfern, (1963); Thermogravimetric Analysis: A Review, Analyst. 88(1053), 906–924. https://en.wikipedia.org/wiki/Thermogravimetric_analysis
14. Pengzhan Sun , Yanlei Wang, He Liu , Kunlin Wang , Dehai Wu , Zhiping Xu, Hongwei Zhu, Thermal Induced Structure Evolution of Graphene Oxide, 9(11), 1-7, (2014).
15. Priyank V. Kumar, Neelkanth M. Bardhan, Sefaattin Tongay, Junqiao Wu, Angela M. Belcher and Jeffrey C. Grossman. Scalable enhancement of graphene oxide properties by thermally driven phase transformation. // Nature chemistry. – 2014. – Vol 6. – Р. 151-157.
16. JIA Tian-Tiana, Sun Bao-Zhenb, Lin Hua-Xianga, LI Yia, Chen Wen-Kaia, Chinese Journal of Structural Chemistry, 32(10), 1475–1484, (2013).
17. Si Zhou & Angelo Bongiorno, Scientific Reports, 3, 2484, 1-6, (2013).
Published
2017-10-10
How to Cite
KUANYSHBEKOV, T.K. et al. Investigation of temperature influence on the process of reduction of graphene oxide. Recent Contributions to Physics (Rec.Contr.Phys.), [S.l.], v. 61, n. 2, p. 18-23, oct. 2017. ISSN 2663-2276. Available at: <https://bph.kaznu.kz/index.php/zhuzhu/article/view/528>. Date accessed: 27 oct. 2020.
Section
Condensed Matter Physics and Materials Science Problems. NanoScience

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.