Recombination luminescence of radiation defects in NaCl and NaCl-Li crystals at low-temperature elastic deformation

  • L. Myasnikova K. Zhubanov Aktobe Regional State University, Aktobe, Kazakstan
  • K. Shunkeyev K. Zhubanov Aktobe Regional State University, Aktobe, Kazakstan
  • Zh. Ubayev K. Zhubanov Aktobe Regional State University, Aktobe, Kazakstan
  • Sh. Sagimbaeva K. Zhubanov Aktobe Regional State University, Aktobe, Kazakstan
  • Zh. Kulbatyr K. Zhubanov Aktobe Regional State University, Aktobe, Kazakstan

Abstract

Using the experimental method of highly sensitive thermoactivation spectroscopy, we studied the spectra of thermally stimulated luminescence (TSL) of purified crystals of NaCl and NaCl-Li under low-temperature (95 K) elastic deformation ( ) in a wide range of the spectrum (200¸850 nm). In the TSL of a NaCl crystal, the dominant peak is an -center, whose intensity doubles during low-temperature deformation and has a maximum of thermal damage at 165–170 K, scanning of which corresponds to the maximum of the TSL spectrum at 3.5 eV. The spectrum of the TSL -peak and the X-ray luminescence coincide and have the same nature – the radiative relaxation of self-trapped excitons upon recombination of mobile holes with electrons. In NaCl-Li TSL, the dominant peaks are F/ and HA (Li) centers, the intensity of which increases 10-fold during low-temperature deformation and having maximum thermal destruction at 110 K and 125 K, respectively. When scanning the TSL spectra at peaks 110K and 125K, we observed radiation with maxima at 2.72 eV and 2.69 eV. An analysis shows that a light lithium cation in the NaCl-Li lattice creates a local deformation as a result of which HA (Li) centers appear. Elastic deformation further stimulates the formation of HA (Li) -centers, evidenced by a 13-fold increase in the intensity of the TSL peak at 125K.

References

1. Lushchik Ch., Lushchik A. Evolution of Anion and Cation Excitons in Alkali Halide Crystals //Physics of the Solid State. – 2018. – Vol. 60. – P. 1487-1505.
2. Lushchik A., Lushchik Ch., Vasil’chenko E., Popov A.I. Radiation creation of cation defects in alkali halide crystals: Review and today’s concept // Low Temperature Physics. – 2018. – Vol. 44. – No. 4. – P. 357-367.
3. Toyozawa Y. Elementary processes in luminescence // J. of Luminescence. – 1976. – Vol. 12/13. – P. 13-21.
4. Messaoudi I.S., ZaouiA., Ferhat M. Band-gap and phonon distribution in alkali halides // Phys. Status Solidi B. – 2014. – P. 1-6.
5. Mamula B.P., Kuzmanović B., Ilić M.M., Ivanović N., Novaković N., Bonding mechanism of some simple ionic systems: Bader topological analysis of some alkali halides and hydrides revisited //Physica B: Condensed Matter. – 2018. – Vol. 545. – P. 146-151.
6. Chandra B.P., Chandra V.K., Jha Piyush, Patel R.P., Baghel R.N. Possibility of elastico-mechanoluminescence dosimetry using alkali halides and other crystals // Radiation Measurements. – 2015. – Vol. 78. – P. 9-16.
7. Chandra B.P. Mechanoluminescence induced by elastic deformation of coloured alkali halide crystals using pressure steps // Journal of Luminescence. – 2008. – Vol. 128. – P. 1217–1224.
8. Kucharczyk W. Photoelastic effect and density derivative of the refractive index in alkali halides // Journal of Physics and Chemistry of Solids. – 1989. – Vol. 50(7). – P. 709-712.
9. Landman U., Scharf D., Jortner J. Electron Localization in Alkali-Halide Clusters // Physical review letters. – 1985. – Vol. 54. – N. 16. – P. 1860-1863.
10. Hoya J., Laborde J.I., Richard D., Rentería M. Ab initio study of F-centers in alkali halides // Computational Materials Science. – 2017. – Vol. 139. –P. 1-7.
11. Jackson K.A. Local Spin Density Treatment of Substitutional Defects in Ionic Crystals with Self-Interaction Corrections // Advances in Atomic, Molecular, and Optical Physics. – 2015. – Vol. 64. – P. 15-27.
12. Myasnikova A., Mysovskya A., Paklin A., Shalaev A. Structure and optical properties of copper impurity in LiF and NaF crystals from ab initio calculations // Chemical Physics Letters. – 2015. – Vol. 633. – P. 218-222.
13. Shunkeyev K.Sh., Zhanturina N.N., Myasnikova L.N., Sergeyev D.M. Aimaganbetova Z.K., Sagymbaeva Sh.Zh., Ubaev Zh. The nature of luminescence of KI and KI-Na crystals at low temperature deformation after natural decrease in the symmetry of the lattice // Eurasian J. Phys. Func. Mat. – 2018. – Vol. 2(3). – P. 267-273.
14. Shunkeyev K., Myasnikova L., Barmina A., Zhanturina N., Sagimbaeva Sh., Aimaganbetova Z., Sergeyev D. The thermostimulated luminescence in KCl, KBr and KI crystals at elastic and plastic deformation // J. Phys. Conf. Ser. – 2017. – Vol. 830. – 012138.
15. Shunkeyev K., Sergeyev D., Drozdowski W., Brylev K., Myasnikova L., Barmina A., Zhanturina N., Sagimbaeva Sh., Aimaganbetova Z. The deformation stimulated luminescence in KCl, KBr and KI crystals // J. Phys. Conf. Ser. – 2017. – Vol. 830. – 012139.
16. Cabrera-Sanfelix P., Portal D.S., Verdaguer A., Darling G.R., Salmeron M., Arnau A. Spontaneous Emergence emergence of Cl- anions from NaCl(100) at low relative humidity //J. Phys. Chem. C. ¬– 2007. – Vol. 111. – P. 8000-8004.
17. Lushchik A., Lushchik Ch., Nagirnyi V., Shablonin E., Vasil’chenko E. Low-temperature creation of Frenkel defects via hot electron-hole recombination in highly pure NaCl single crystals // Low Temperature Physics. – 2016. – Vol. 42. – No. 7. – P. 547-551.
18. Song S., Williams R.T. Self-Trapped Excitons// 2nd ed., Springer, Berlin. ¬- 1996. – 404 p.
19. Shunkeyev K., Sarmukhanov E., Bekeshev A., Sagimbaeva Sh., Bizhanova K. The cryostat for deformation of crystals at low temperatures // J. Phys. Conf. Ser. – 2012. – Vol. 400. – 052032.
20. Ikezawa M., Kojima T. Luminescence of alkali halide crystals induced by UV-lighten at low temperature// J. Phys. Soc. Japan. – 1969. – Vol. 27. – P. 1551-1563.
21. Aboltin D., Grabovskis V., Kangro A., Lushchik Ch., O`Konnel-Bronin A., Vitol I., Zirap V. Thermally stimulated and tunneling luminescence and frenkel defects recombination in KCl and KBr at 4.2 K to 77 K // Phys. Stat. Sol. (a). – 1978. - Vol. 47. - P. 667–675.
22. Elango A., Sagimbaeva S., Sarmukhanov E., Savikhina T., Shunkeev K. Effect of uniaxial stress on luminescence of X- and VUV- irradiated NaCl and NaBr crystals // Radiation Measurements. – 2001. – Vol. 33, № 5. – Р. 823–827.
23. Nishimura H., Tsujimoto T., Nakayama M., Morita S., Kobayashi M. Spectral changes f the self-trapped exciton luminescence in RbI under hydrostatic pressure // J. Lumin. – 1994. – Vol. 62. – P. 41-47.
24. Lushchik A., Lushchik Ch., Vasil'chenko E., Kirm M., Martinson I. Control of excitonic and electron-hole processes in wide-gap crystals by means of elastic uniaxial stress // Surf. Rev. Lett. – 2002. – Vol. 9. – P. 299-303.
25. Shunkeyev K., Zhanturina N., Aimaganbetova Z., Barmina A., Myasnikova L., Sagymbaeva Sh., Sergeyev D. The specifics of radiative annihilation of self-trapped excitons in a KI-Tl crystal under low-temperature deformation // Low temperature physics. – 2016. – Vol. 42. – №7. – Р. 580-583.


References
1. Ch. Lushchik and A. Lushchik, Physics of the Solid State 60, 1487-1505, (2018), https://doi.org/10.1134/S1063783418080164.
2. A. Lushchik, Ch. Lushchik, E. Vasil’chenko and A.I. Popov, Low Temperature Physics 44, 357-367, (2018), https://doi.org/10.1063/1.5030448.
3. Y. Toyozawa, J. of Luminescence 12/13, 13-21, (1976), https://doi.org/10.1016/0022-2313(76)90061-2.
4. I.S. Messaoudi, A. Zaoui and M. Ferhat, Phys. Status Solidi B, 1-6, (2014), https://doi.org/10.1002/pssb.201451268.
5. B.P. Mamula, B. Kuzmanović, M.M. Ilić, N. Ivanović and N. Novaković, Physica B: Condensed Matter 545, 146-151, (2018), https://doi.org/10.1016/j.physb.2018.06.008.
6. B.P. Chandra, V.K. Chandra, Piyush Jha, R.P. Patel and R.N. Baghel, Radiation Measurements 78, 9-16, (2015), https://doi.org/10.1016/j.radmeas.2015.04.019.
7. B.P. Chandra, Journal of Luminescence 128, 1217–1224, (2008) https://doi.org/10.1016/j.jlumin.2007.12.001.
8. W. Kucharczyk, Journal of Physics and Chemistry of Solids 50(7), 709-712, (1989), https://doi.org/10.1016/0022-3697(89)90009-7.
9. U. Landman, D. Scharf and J. Jortner, Physical review letters 54 (16), 1860-1863, (1985), https://doi.org/10.1103/PhysRevLett.54.1860.
10. J. Hoya, J.I. Laborde, D. Richard and M. Rentería, Computational Materials Science 139, 1-7, (2017), https://doi.org/10.1016/j.commatsci.2017.07.015.
11. K.A. Jackson, Advances in Atomic, Molecular, and Optical Physics 64, 15-27, (2015), http://dx.doi.org/10.1016/bs.aamop.2015.06.001
12. A. Myasnikova, A. Mysovskya, A. Paklin and A. Shalaev, Chemical Physics Letters 633, 218-222, (2015), https://doi.org/10.1016/j.cplett.2015.05.033
13. K. Shunkeyev, N. Zhanturina, L. Myasnikova, D. Sergeyev, Z. Aimaganbetova, Sh. Sagymbaeva and Zh. Ubaev, Eurasian J. Phys. Func. Mat. 2(3), 267-273, (2018), https://doi.org/10.29317/ejpfm.2018020308
14. K. Shunkeyev, L. Myasnikova, A. Barmina, N. Zhanturina, Sh. Sagimbaeva, Z. Aimaganbetova and D. Sergeyev, J. Phys. Conf. Ser. 830, 012138, (2017), https://doi.org/10.1088/1742-6596/830/1/012138
15. K. Shunkeyev, D. Sergeyev, W. Drozdowski, K. Brylev, L. Myasnikova, A. Barmina, N. Zhanturina, Sh. Sagimbaeva and Z. Aimaganbetova, J. Phys. Conf. Ser. 830, 012139, (2017), https://doi.org/10.1088/1742-6596/830/1/012139
16. P. Cabrera-Sanfelix, D.S. Portal, A. Verdaguer, G.R. Darling, M. Salmeron and A. Arnau, J. Phys. Chem. C, 111, 8000-8004, (2007), https://doi.org/10.1021/jp070548t
17. A. Lushchik, Ch. Lushchik, V. Nagirnyi, E. Shablonin and E. Vasil’chenko, Low Temperature Physics, 42, 547-551, (2016), https://doi.org/1063-777X/2016/42(7)/5/$32.00
18. S. Song and R.T. Williams, Self-Trapped Excitons, 2nd ed., Springer, Berlin (1996).
19. K. Shunkeyev, E. Sarmukhanov, A. Bekeshev, Sh. Sagimbaeva, and K. Bizhanova, J. Phys. Conf. Ser. 400, 052032 (2012). https://doi.org/10.1088/1742-6596/400/5/052032
20. M. Ikezawa and T. Kojima, J. Phys. Soc. Japan 27, 1551 (1969) https://doi.org/10.1143/JPSJ.27.1551
21. D. Aboltin, V. Grabovskis, A. Kangro, Ch. Lushchik, A. O`Konnel-Bronin, I. Vitol and V. Zirap, Phys. Stat. Sol., (a), 47, 667-675, (1978), https://doi.org/10.1002/pssa.2210470239
22. A. Elango, S. Sagimbaeva, E. Sarmukhanov, T. Savikhina and K. Shunkeev, Radiation Measurements, 33 (5), 823-827, (2001), https://doi.org/10.1016/S1350-4487(01)00244-X1.
23. H. Nishimura, T. Tsujimoto, M. Nakayama, S. Morita and M. Kobayashi, J. Lumin. 62, 41-47, (1994), https://doi.org/10.1016/0022-2313(94)90074-4
24. A. Lushchik, Ch. Lushchik, E. Vasil'chenko, M. Kirm and I. Martinson, Surf. Rev. Lett. 9, 299-303, (2002), https://doi.org/10.1142/S0218625X02002221
25. K. Shunkeyev, N. Zhanturina, Z. Aimaganbetova, A. Barmina, L. Myasnikova, Sh. Sagymbaeva and D. Sergeyev, Low temperature physics, 42, 580-583, (2016), https://doi.org/10.1063/1.4960008.
Published
2019-12-21
How to Cite
MYASNIKOVA, L. et al. Recombination luminescence of radiation defects in NaCl and NaCl-Li crystals at low-temperature elastic deformation. Recent Contributions to Physics (Rec.Contr.Phys.), [S.l.], v. 71, n. 4, p. 75-81, dec. 2019. ISSN 2663-2276. Available at: <https://bph.kaznu.kz/index.php/zhuzhu/article/view/1197>. Date accessed: 31 oct. 2020. doi: https://doi.org/10.26577/RCPh-2019-i4-10.
Section
Condensed Matter Physics and Materials Science Problems. NanoScience

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.