Рекомбинационная люминесценция радиационных дефектов в кристаллах NaCl и NaCl-Li при низкотемпературной упругой деформации

Авторы

  • L. Myasnikova Актюбинский региональный государственный университет им. К. Жубанова, г.Актобе, Казахстан
  • K. Shunkeyev Актюбинский региональный государственный университет им. К. Жубанова, г.Актобе, Казахстан
  • Zh. Ubayev Актюбинский региональный государственный университет им. К. Жубанова, г.Актобе, Казахстан
  • Sh. Sagimbaeva Актюбинский региональный государственный университет им. К. Жубанова, г.Актобе, Казахстан
  • Zh. Kulbatyr Актюбинский региональный государственный университет им. К. Жубанова, г.Актобе, Казахстан

DOI:

https://doi.org/10.26577/RCPh-2019-i4-10

Аннотация

Экспериментальным методом высокочувствительной термоактивационной спектроскопии исследованы спектры термостимулированной люминесценции (ТСЛ) зонноочищенных кристаллов NaCl и NaCl-Li при низкотемпературной (95 К) упругой деформации ( ) в широком интервале спектра (200¸850 нм). В ТСЛ кристалла NaCl доминирующим пиком является -центр, интенсивность которого вдвое возрастает при низкотемпературной деформации и имеющий максимум термического разрушения при 165-170 К, сканирование которого соответствует максимуму спектра ТСЛ при 3,5 эВ. Спектр ТСЛ -пика и рентгенолюминесценции совпадают и имеют одну природу – излучательную релаксацию автолокализованных экситонов при рекомбинации подвижных дырок с электронами. В ТСЛ NaCl-Li доминирующими пиками являются F/ и HA(Li) -центры, интенсивность которых усиливается в 10 раз при низкотемпературной деформации и имеющие максимумы термического разрушения при 110К и 125К, соответственно. При сканировании спектров ТСЛ в пиках 110 К и 125 К зарегистрированы излучения с максимумами при 2,72 эВ и 2,69 эВ. Анализ показывает, что легкий катион лития в решетке NaCl-Li создает локальную деформацию в результате, которого появляются HA(Li)-центры. Упругая деформация еще больше стимулирует образование HA(Li)-центров, свидетельством которого является усиление в 13 раз интенсивности пика ТСЛ при 125 К.

Библиографические ссылки

1. Lushchik Ch., Lushchik A. Evolution of Anion and Cation Excitons in Alkali Halide Crystals //Physics of the Solid State. – 2018. – Vol. 60. – P. 1487-1505.
2. Lushchik A., Lushchik Ch., Vasil’chenko E., Popov A.I. Radiation creation of cation defects in alkali halide crystals: Review and today’s concept // Low Temperature Physics. – 2018. – Vol. 44. – No. 4. – P. 357-367.
3. Toyozawa Y. Elementary processes in luminescence // J. of Luminescence. – 1976. – Vol. 12/13. – P. 13-21.
4. Messaoudi I.S., ZaouiA., Ferhat M. Band-gap and phonon distribution in alkali halides // Phys. Status Solidi B. – 2014. – P. 1-6.
5. Mamula B.P., Kuzmanović B., Ilić M.M., Ivanović N., Novaković N., Bonding mechanism of some simple ionic systems: Bader topological analysis of some alkali halides and hydrides revisited //Physica B: Condensed Matter. – 2018. – Vol. 545. – P. 146-151.
6. Chandra B.P., Chandra V.K., Jha Piyush, Patel R.P., Baghel R.N. Possibility of elastico-mechanoluminescence dosimetry using alkali halides and other crystals // Radiation Measurements. – 2015. – Vol. 78. – P. 9-16.
7. Chandra B.P. Mechanoluminescence induced by elastic deformation of coloured alkali halide crystals using pressure steps // Journal of Luminescence. – 2008. – Vol. 128. – P. 1217–1224.
8. Kucharczyk W. Photoelastic effect and density derivative of the refractive index in alkali halides // Journal of Physics and Chemistry of Solids. – 1989. – Vol. 50(7). – P. 709-712.
9. Landman U., Scharf D., Jortner J. Electron Localization in Alkali-Halide Clusters // Physical review letters. – 1985. – Vol. 54. – N. 16. – P. 1860-1863.
10. Hoya J., Laborde J.I., Richard D., Rentería M. Ab initio study of F-centers in alkali halides // Computational Materials Science. – 2017. – Vol. 139. –P. 1-7.
11. Jackson K.A. Local Spin Density Treatment of Substitutional Defects in Ionic Crystals with Self-Interaction Corrections // Advances in Atomic, Molecular, and Optical Physics. – 2015. – Vol. 64. – P. 15-27.
12. Myasnikova A., Mysovskya A., Paklin A., Shalaev A. Structure and optical properties of copper impurity in LiF and NaF crystals from ab initio calculations // Chemical Physics Letters. – 2015. – Vol. 633. – P. 218-222.
13. Shunkeyev K.Sh., Zhanturina N.N., Myasnikova L.N., Sergeyev D.M. Aimaganbetova Z.K., Sagymbaeva Sh.Zh., Ubaev Zh. The nature of luminescence of KI and KI-Na crystals at low temperature deformation after natural decrease in the symmetry of the lattice // Eurasian J. Phys. Func. Mat. – 2018. – Vol. 2(3). – P. 267-273.
14. Shunkeyev K., Myasnikova L., Barmina A., Zhanturina N., Sagimbaeva Sh., Aimaganbetova Z., Sergeyev D. The thermostimulated luminescence in KCl, KBr and KI crystals at elastic and plastic deformation // J. Phys. Conf. Ser. – 2017. – Vol. 830. – 012138.
15. Shunkeyev K., Sergeyev D., Drozdowski W., Brylev K., Myasnikova L., Barmina A., Zhanturina N., Sagimbaeva Sh., Aimaganbetova Z. The deformation stimulated luminescence in KCl, KBr and KI crystals // J. Phys. Conf. Ser. – 2017. – Vol. 830. – 012139.
16. Cabrera-Sanfelix P., Portal D.S., Verdaguer A., Darling G.R., Salmeron M., Arnau A. Spontaneous Emergence emergence of Cl- anions from NaCl(100) at low relative humidity //J. Phys. Chem. C. ¬– 2007. – Vol. 111. – P. 8000-8004.
17. Lushchik A., Lushchik Ch., Nagirnyi V., Shablonin E., Vasil’chenko E. Low-temperature creation of Frenkel defects via hot electron-hole recombination in highly pure NaCl single crystals // Low Temperature Physics. – 2016. – Vol. 42. – No. 7. – P. 547-551.
18. Song S., Williams R.T. Self-Trapped Excitons// 2nd ed., Springer, Berlin. ¬- 1996. – 404 p.
19. Shunkeyev K., Sarmukhanov E., Bekeshev A., Sagimbaeva Sh., Bizhanova K. The cryostat for deformation of crystals at low temperatures // J. Phys. Conf. Ser. – 2012. – Vol. 400. – 052032.
20. Ikezawa M., Kojima T. Luminescence of alkali halide crystals induced by UV-lighten at low temperature// J. Phys. Soc. Japan. – 1969. – Vol. 27. – P. 1551-1563.
21. Aboltin D., Grabovskis V., Kangro A., Lushchik Ch., O`Konnel-Bronin A., Vitol I., Zirap V. Thermally stimulated and tunneling luminescence and frenkel defects recombination in KCl and KBr at 4.2 K to 77 K // Phys. Stat. Sol. (a). – 1978. - Vol. 47. - P. 667–675.
22. Elango A., Sagimbaeva S., Sarmukhanov E., Savikhina T., Shunkeev K. Effect of uniaxial stress on luminescence of X- and VUV- irradiated NaCl and NaBr crystals // Radiation Measurements. – 2001. – Vol. 33, № 5. – Р. 823–827.
23. Nishimura H., Tsujimoto T., Nakayama M., Morita S., Kobayashi M. Spectral changes f the self-trapped exciton luminescence in RbI under hydrostatic pressure // J. Lumin. – 1994. – Vol. 62. – P. 41-47.
24. Lushchik A., Lushchik Ch., Vasil'chenko E., Kirm M., Martinson I. Control of excitonic and electron-hole processes in wide-gap crystals by means of elastic uniaxial stress // Surf. Rev. Lett. – 2002. – Vol. 9. – P. 299-303.
25. Shunkeyev K., Zhanturina N., Aimaganbetova Z., Barmina A., Myasnikova L., Sagymbaeva Sh., Sergeyev D. The specifics of radiative annihilation of self-trapped excitons in a KI-Tl crystal under low-temperature deformation // Low temperature physics. – 2016. – Vol. 42. – №7. – Р. 580-583.


References
1. Ch. Lushchik and A. Lushchik, Physics of the Solid State 60, 1487-1505, (2018), https://doi.org/10.1134/S1063783418080164.
2. A. Lushchik, Ch. Lushchik, E. Vasil’chenko and A.I. Popov, Low Temperature Physics 44, 357-367, (2018), https://doi.org/10.1063/1.5030448.
3. Y. Toyozawa, J. of Luminescence 12/13, 13-21, (1976), https://doi.org/10.1016/0022-2313(76)90061-2.
4. I.S. Messaoudi, A. Zaoui and M. Ferhat, Phys. Status Solidi B, 1-6, (2014), https://doi.org/10.1002/pssb.201451268.
5. B.P. Mamula, B. Kuzmanović, M.M. Ilić, N. Ivanović and N. Novaković, Physica B: Condensed Matter 545, 146-151, (2018), https://doi.org/10.1016/j.physb.2018.06.008.
6. B.P. Chandra, V.K. Chandra, Piyush Jha, R.P. Patel and R.N. Baghel, Radiation Measurements 78, 9-16, (2015), https://doi.org/10.1016/j.radmeas.2015.04.019.
7. B.P. Chandra, Journal of Luminescence 128, 1217–1224, (2008) https://doi.org/10.1016/j.jlumin.2007.12.001.
8. W. Kucharczyk, Journal of Physics and Chemistry of Solids 50(7), 709-712, (1989), https://doi.org/10.1016/0022-3697(89)90009-7.
9. U. Landman, D. Scharf and J. Jortner, Physical review letters 54 (16), 1860-1863, (1985), https://doi.org/10.1103/PhysRevLett.54.1860.
10. J. Hoya, J.I. Laborde, D. Richard and M. Rentería, Computational Materials Science 139, 1-7, (2017), https://doi.org/10.1016/j.commatsci.2017.07.015.
11. K.A. Jackson, Advances in Atomic, Molecular, and Optical Physics 64, 15-27, (2015), http://dx.doi.org/10.1016/bs.aamop.2015.06.001
12. A. Myasnikova, A. Mysovskya, A. Paklin and A. Shalaev, Chemical Physics Letters 633, 218-222, (2015), https://doi.org/10.1016/j.cplett.2015.05.033
13. K. Shunkeyev, N. Zhanturina, L. Myasnikova, D. Sergeyev, Z. Aimaganbetova, Sh. Sagymbaeva and Zh. Ubaev, Eurasian J. Phys. Func. Mat. 2(3), 267-273, (2018), https://doi.org/10.29317/ejpfm.2018020308
14. K. Shunkeyev, L. Myasnikova, A. Barmina, N. Zhanturina, Sh. Sagimbaeva, Z. Aimaganbetova and D. Sergeyev, J. Phys. Conf. Ser. 830, 012138, (2017), https://doi.org/10.1088/1742-6596/830/1/012138
15. K. Shunkeyev, D. Sergeyev, W. Drozdowski, K. Brylev, L. Myasnikova, A. Barmina, N. Zhanturina, Sh. Sagimbaeva and Z. Aimaganbetova, J. Phys. Conf. Ser. 830, 012139, (2017), https://doi.org/10.1088/1742-6596/830/1/012139
16. P. Cabrera-Sanfelix, D.S. Portal, A. Verdaguer, G.R. Darling, M. Salmeron and A. Arnau, J. Phys. Chem. C, 111, 8000-8004, (2007), https://doi.org/10.1021/jp070548t
17. A. Lushchik, Ch. Lushchik, V. Nagirnyi, E. Shablonin and E. Vasil’chenko, Low Temperature Physics, 42, 547-551, (2016), https://doi.org/1063-777X/2016/42(7)/5/$32.00
18. S. Song and R.T. Williams, Self-Trapped Excitons, 2nd ed., Springer, Berlin (1996).
19. K. Shunkeyev, E. Sarmukhanov, A. Bekeshev, Sh. Sagimbaeva, and K. Bizhanova, J. Phys. Conf. Ser. 400, 052032 (2012). https://doi.org/10.1088/1742-6596/400/5/052032
20. M. Ikezawa and T. Kojima, J. Phys. Soc. Japan 27, 1551 (1969) https://doi.org/10.1143/JPSJ.27.1551
21. D. Aboltin, V. Grabovskis, A. Kangro, Ch. Lushchik, A. O`Konnel-Bronin, I. Vitol and V. Zirap, Phys. Stat. Sol., (a), 47, 667-675, (1978), https://doi.org/10.1002/pssa.2210470239
22. A. Elango, S. Sagimbaeva, E. Sarmukhanov, T. Savikhina and K. Shunkeev, Radiation Measurements, 33 (5), 823-827, (2001), https://doi.org/10.1016/S1350-4487(01)00244-X1.
23. H. Nishimura, T. Tsujimoto, M. Nakayama, S. Morita and M. Kobayashi, J. Lumin. 62, 41-47, (1994), https://doi.org/10.1016/0022-2313(94)90074-4
24. A. Lushchik, Ch. Lushchik, E. Vasil'chenko, M. Kirm and I. Martinson, Surf. Rev. Lett. 9, 299-303, (2002), https://doi.org/10.1142/S0218625X02002221
25. K. Shunkeyev, N. Zhanturina, Z. Aimaganbetova, A. Barmina, L. Myasnikova, Sh. Sagymbaeva and D. Sergeyev, Low temperature physics, 42, 580-583, (2016), https://doi.org/10.1063/1.4960008.

Загрузки

Опубликован

2019-12-21

Выпуск

Раздел

Физика конденсированного состояния и проблемы материаловедения. Нанонаука

Наиболее читаемые статьи этого автора (авторов)