Underground investigation of extensive air showers spectra at high energy range of cosmic rays and other research in the Pyhäsalmi mine

Abstract

High energy particles reaching the Earth’s atmosphere are known as cosmic rays. As a result of interactions with nuclei of air molecules, cosmic rays induce showers of secondary particles, which can be divided into 3 components: electromagnetic, hadronic and muonic components. The Experiment with Multi Muon Array (EMMA), located at the depth of 75 m in the Pyhäsalmi mine in Finland, investigates the muonic component of the Extensive Air Showers (EAS) to deduce the direction, energy, and the mass of the primary cosmic ray particles. In this paper we give a concise description and methodology used by EMMA followed by a brief review of the C14 experiment. Finally, we review the feasibility to host in the Pyhäsalmi mine a future large-scale liquid-based neutrino detector and implement a novel concept of acoustic detection of neutrinos in bedrock utilizing the network of many kilometers of boreholes surrounding the now-exploited ore body.

References

1 K.H. Kampert et al. Front. Astron. Space Sci., 6 (24) (2019).

2 W.D. Apel et al. Astroparticle Physics, 47, 54 (2013).

3 Y. Zhao et al. Intern. J. Of Modern Physics D, 25 (1), 1650006 (2016).

4 T. Kalliokoski et al. Prog. Part. Nucl. Phys., 66, 468–472 (2011).

5 W.H. Trzaska et al., Prog. Part. Nucl. Phys., 66, 463–467, (2011).

6 W.H. Trzaska et al., J. Phys. Conf. Ser., 375, 042060 (2012).

7 G. Alimonti et al., Phys. Lett., B422, 349–358 (1998).

8 C. Che. Mark et al., 34th Intern. Conf. on High Energy Physics (ICHEP 2008), Philadelphia, Pennsylvania, July 30-August 5 (2008).

9 An. Fengpeng et al., J. Phys., G43 (3), 030401 (2016).

10 P. Aarnio and the DELPHICollaboration, Nucl.Inst. Meth.in Phys.Res. A303, 233 (1991).

11 E.V. Akhrameev et al., Nucl. Inst. Meth. in Phys.Res. A610, 419 (2009).

12 I. Bandac et al., J. Phys.Conf.Ser. 934, 012019 (2017).

13 T. Antoni etal., Nucl.Inst. Meth.in Phys.Res. A533, 387 (2004).

14 P. Kuusiniemi et al., Astroparticle Physics, 102, 67–76 (2018).

15 D. Heck et al., Report FZKA, 6019 (1998).

16 P. Kuusiniemi et al., J. Phys. Conf. Ser., 409, 012067 (2013).

17 H.O. Back et al., Nucl. Instrum. Meth., A585, 48–60 (2008).

18 G. Keefer., AIP Conf. Proc., 1338, 175–178 (2011).

19 C. Buck et al., Instrum. Exp. Tech., 55, 34–37 (2012).

20 Accelerator mass spectrometry (AMS) dating. https://www.radiocarbon.com/accelerator-mass-spectrometry.htm.

21 G. Bonvicini et al., https://arxiv.org/abs/hep-ex/0308025v2 (2003).

22 W.H. Trzaska et al., Prog. Part. Nucl. Phys., 66, 463–467 (2011).

23 W.H. Trzaska et al., J. Phys. Conf. Ser., 375, 042060 (2012).

24 Vyacheslav Galymov et al., Nucl. Part. Phys. Proc., 273-275, 1854–1860 (2016).

25 Dune. http://www.dunescience.org/. Accessed: 2018-09-30.

26 M. Wurm et al., Astropart. Phys., 35, 685–732 (2012).

27 W.H. Trzaska et al., EPJ Web Conf., 216, 04009 (2019).

28 J.A. Aguilar et al., Nucl. Instrum.Meth., A626-627, 128–143 (2011).
Published
2020-03-27
How to Cite
YEREZHEP, N. et al. Underground investigation of extensive air showers spectra at high energy range of cosmic rays and other research in the Pyhäsalmi mine. Recent Contributions to Physics (Rec.Contr.Phys.), [S.l.], v. 72, n. 1, p. 19-26, mar. 2020. ISSN 2663-2276. Available at: <https://bph.kaznu.kz/index.php/zhuzhu/article/view/1245>. Date accessed: 22 sep. 2020. doi: https://doi.org/10.26577/RCPh.2020.v72.i1.03.
Section
Theoretical Physics. Nuclear and Elementary Particle Physics. Astrophysics

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.