Underground investigation of extensive air showers spectra at high energy range of cosmic rays and other research in the Pyhäsalmi mine
DOI:
https://doi.org/10.26577/RCPh.2020.v72.i1.03Кілттік сөздер:
высокоэнергичный мюон, космические лучи, широкий атмосферный ливень (ШАЛ), колена, EMMA, high-energy muon, cosmic rays, Extensive Air Shower (EAS), EMMAАннотация
High energy particles reaching the Earth’s atmosphere are known as cosmic rays. As a result of interactions with nuclei of air molecules, cosmic rays induce showers of secondary particles, which can be divided into 3 components: electromagnetic, hadronic and muonic components. The Experiment with Multi Muon Array (EMMA), located at the depth of 75 m in the Pyhäsalmi mine in Finland, investigates the muonic component of the Extensive Air Showers (EAS) to deduce the direction, energy, and the mass of the primary cosmic ray particles. In this paper we give a concise description and methodology used by EMMA followed by a brief review of the C14 experiment. Finally, we review the feasibility to host in the Pyhäsalmi mine a future large-scale liquid-based neutrino detector and implement a novel concept of acoustic detection of neutrinos in bedrock utilizing the network of many kilometers of boreholes surrounding the now-exploited ore body.
Библиографиялық сілтемелер
2 W.D. Apel et al. Astroparticle Physics, 47, 54 (2013).
3 Y. Zhao et al. Intern. J. Of Modern Physics D, 25 (1), 1650006 (2016).
4 T. Kalliokoski et al. Prog. Part. Nucl. Phys., 66, 468–472 (2011).
5 W.H. Trzaska et al., Prog. Part. Nucl. Phys., 66, 463–467, (2011).
6 W.H. Trzaska et al., J. Phys. Conf. Ser., 375, 042060 (2012).
7 G. Alimonti et al., Phys. Lett., B422, 349–358 (1998).
8 C. Che. Mark et al., 34th Intern. Conf. on High Energy Physics (ICHEP 2008), Philadelphia, Pennsylvania, July 30-August 5 (2008).
9 An. Fengpeng et al., J. Phys., G43 (3), 030401 (2016).
10 P. Aarnio and the DELPHICollaboration, Nucl.Inst. Meth.in Phys.Res. A303, 233 (1991).
11 E.V. Akhrameev et al., Nucl. Inst. Meth. in Phys.Res. A610, 419 (2009).
12 I. Bandac et al., J. Phys.Conf.Ser. 934, 012019 (2017).
13 T. Antoni etal., Nucl.Inst. Meth.in Phys.Res. A533, 387 (2004).
14 P. Kuusiniemi et al., Astroparticle Physics, 102, 67–76 (2018).
15 D. Heck et al., Report FZKA, 6019 (1998).
16 P. Kuusiniemi et al., J. Phys. Conf. Ser., 409, 012067 (2013).
17 H.O. Back et al., Nucl. Instrum. Meth., A585, 48–60 (2008).
18 G. Keefer., AIP Conf. Proc., 1338, 175–178 (2011).
19 C. Buck et al., Instrum. Exp. Tech., 55, 34–37 (2012).
20 Accelerator mass spectrometry (AMS) dating. https://www.radiocarbon.com/accelerator-mass-spectrometry.htm.
21 G. Bonvicini et al., https://arxiv.org/abs/hep-ex/0308025v2 (2003).
22 W.H. Trzaska et al., Prog. Part. Nucl. Phys., 66, 463–467 (2011).
23 W.H. Trzaska et al., J. Phys. Conf. Ser., 375, 042060 (2012).
24 Vyacheslav Galymov et al., Nucl. Part. Phys. Proc., 273-275, 1854–1860 (2016).
25 Dune. http://www.dunescience.org/. Accessed: 2018-09-30.
26 M. Wurm et al., Astropart. Phys., 35, 685–732 (2012).
27 W.H. Trzaska et al., EPJ Web Conf., 216, 04009 (2019).
28 J.A. Aguilar et al., Nucl. Instrum.Meth., A626-627, 128–143 (2011).