Investigation of temperature influence on the process of reduction of graphene oxide

Авторлар

  • T.K. Kuanyshbekov NNLOT, Al-Farabi Kazakh National University, Almaty, Kazakhstan
  • М.А. Tulegenova NNLOT, Al-Farabi Kazakh National University, Almaty, Kazakhstan
  • G.A. Baigarinova NNLOT, Al-Farabi Kazakh National University, Almaty, Kazakhstan
  • N.R. Guseinov ННЛОТ, КазНУ им.аль-Фараби, г.Алматы, Казахстан
  • A.M. Ilyin NNLOT, Al-Farabi Kazakh National University, Almaty, Kazakhstan
        123 37

Кілттік сөздер:

graphene, graphene oxide, reduced graphene oxide, Raman spectroscopy, energy dispersive x-ray spectroscopy, energy dispersive analysis

Аннотация

The paper presents the results of influence different temperature on reducing graphene oxide. The influence of atmosphere pressure hydrogen gas at temperatures: 150 °C, 300 °C, 500 °C, 900 °C on the structure and composition of functionalized graphene was studied. The positions and ratio of Raman peaks of graphene oxide and thermally-reduced graphene are shown. Collected SEM images of graphene oxide are demonstrates layered structure, and the elemental composition of the thermally-reduced graphene at various temperatures was determined by using EDX spectroscopy. The obtained elemental analysis results are in good agreement with the data on the mass loss of thermally-reduced graphene, which is explained by the removal of functional groups.

Библиографиялық сілтемелер

1. Ilyin A.M., Beall G.W. Computer simulation of graphene-metal composite induced by radiation // NanoTech Conference & Expo-2011. – 2011. – P. 574-576.
2. Байгаринова Г.А., Мырзабекова М.М., Тулегенова М.А., Гусейнов Н.Р., Ильин А.М. Получение и исследование новых компостных материалов полимер-графен // Вестник КазНУ, сер. физическая. - 2013. - № 4(47). - P.23-29.
3. Мырзабекова М.М., Байгаринова Г.А., Гусейнов Н.Р., Ильин А.М. Определение характера проводимости композитов на полимерной основе с наполнителями из графены и его родственных структур // Вестник КазНУ, серия физическая. - 2015. -№1(52). - С.60-66.
4. Байгаринова Г.А., Мырзабекова М.М., Гусейнов Н.Р. Изучение свойств новых полимерных композитных материалов с наполнителями из графены и его производных структур // Тезисы докл. Междунар. Конф. студентов и молодых ученых «Фараби алеми». - Алматы, 8-10 апреля 2014. - С. 177.
5. Мырзабекова М.М., Байгаринова Г.А., Гусейнов Н.Р. Восстановление и исследование оксида графена // Тезисы докл. Междунар. Конф. студентов и молодых ученых «Фараби алеми». - Алматы, 8-10 апреля 2014. - С. 200.
6. Dimiev A.M. and Tour J.M. Mechanism of Graphene Oxide Formation // ACS Nano. – 2014. – Vol 8 (3). – P.3060–3068.
7. Kuila T., Bose S., Mishra A.K., Khanra P., Kim N.H., Lee J.H. Chemical functionalization of graphene and its applications // Prog Mater Sci. – 2012. – Vol 57(7). – P.1061-105.
8. Eda G., Chhowalla M. Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics // Adv Mater. – 2010. – Vol 22(22). – P.2392–415.
9. Stankovich S., Dikin D.A., Piner R.D., Kohlhaas K.A., Kleinhammes A., Jia Y., et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. // Carbon. – 2007. – Vol 45. – P.1558–65.
10. Kaniyoor A., Baby T.T., Arockiadoss T., Rajalakshmi N., Ramaprabhu S. Wrinkled graphenes: A study on the effects of synthesis parameters on exfoliation-reduction of graphite oxide // J Phys Chem C. – 2011. – Vol 115. – P. 17660–9.
11. Sundaram R.S., Gomez-Navarro C., Balasubramanian K., Burghard M., Kern K. Electrochemical modification of graphene // Adv Mater. – 2008. – Vol 20. – P.3050–3.
12. Seung Hun Huh Thermal Reduction of Graphene Oxide // Physics and Applications of Graphene - Experiments, Dr. Sergey Mikhailov (Ed.), 2011. – P. 87-89.
13. Coats A. W., Redfern J.P., 1963. / Thermogravimetric Analysis: A Review // Analyst. – N 88 (1053). – P. 906–924 https://en.wikipedia.org/wiki/Thermogravimetric_analysis.
14. Sun P., Wang Y., Liu H., Wang K., Wu D., Xu Z., Zhu H. Structure Evolution of Graphene Oxide during Thermally Driven Phase Transformation: Is the Oxygen Content Really Preserved? // Thermal Induced Structure Evolution of Graphene Oxide. – 2014. – Vol 9, Is 11. – Р. 1-7.
15. Kumar P.V., Bardhan N.M., Tongay S., Wu J., Belcher A.M. and Grossman J.C. Scalable enhancement of graphene oxide properties by thermally driven phase transformation. // Nature chemistry. – 2014. – Vol. 6. – Р. 151-157.
16. JIa Tian-Tiana, Sun Bao-Zhenb, Lin Hua-Xianga, Li Yia, Chen Wen-Kaia. Bonding of Hydroxyl and Epoxy Groups on Graphene: Insights from Density Functional Calculations // Chinese Journal of Structural Chemistry. – 2013. – Vol 32. No. 10. – Р. 1475–1484.
17. Si Zhou & Angelo Bongiorno. Origin of the Chemical and Kinetic Stability of Graphene Oxid. // Scientific Reports. – 2013. – Vol 3: 2484. – Р. 1-6.

References
1. A.M. Ilyin, G.W. Beall, NanoTech Conference & Expo-2011, 574-576, (2011).
2. G.A. Baygarinova, M.M. Myrzabekova, M.A. Tulegenova, N.R. Guseinov, A.M. Ilyin, KazNU bulletin, Physics series, 4(47), 23-29, (2013). (in russ.)
3. M.M. Myrzabekova, G.A. Baygarinova, N.R. Guseinov, A.M. Ilyin, KazNU bulletin, Physics series, 1(52), 60-66, (2015). (in russ.)
4. G.A. Baygarinova, M.M. Myrzabekova, N.R. Guseinov, Tezisy dokl. Mezhdunarod. konferencia studentov i molodykh uchenykh “Farabi alemi”, Almaty, 8-10 aprelya 2014, 177. (in russ.)
5. M.M. Myrzabekova, G.A. Baygarinova, N.R. Guseinov, Tezisy dokl. Mezhdunarod. konferencia studentov i molodykh uchenykh “Farabi alemi”, Almaty, 8-10 aprelya 2014, 200. (in russ.)
6. A.M. Dimiev and J.M. Tour, ACS Nano, 8 (3), 3060–3068, (2014).
7. T. Kuila, S. Bose, A.K. Mishra, P. Khanra, N.H. Kim, J.H. Lee, Prog Mater Sci., 57(7), 1061-105, (2012).
8. G. Eda, M. Chhowalla, Adv Mater., 22(22), 2392–415, (2010).
9. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, et al., Carbon, 45, 1558–65, (2007).
10. A. Kaniyoor, T.T. Baby, T. Arockiadoss, N. Rajalakshmi, S. Ramaprabhu, J Phys Chem C, 115, 17660–9, (2011).
11. R.S. Sundaram, C. Gomez-Navarro, K. Balasubramanian, M. Burghard, K..Kern, Adv Mater., 20, 3050–3, (2008).
12. Seung Hun Huh, Thermal Reduction of Graphene Oxide, Physics and Applications of Graphene - Experiments, Dr. Sergey Mikhailov (Ed.), 2011, 87-89.
13. A.W. Coats, J.P. Redfern, (1963); Thermogravimetric Analysis: A Review, Analyst. 88(1053), 906–924. https://en.wikipedia.org/wiki/Thermogravimetric_analysis
14. Pengzhan Sun , Yanlei Wang, He Liu , Kunlin Wang , Dehai Wu , Zhiping Xu, Hongwei Zhu, Thermal Induced Structure Evolution of Graphene Oxide, 9(11), 1-7, (2014).
15. Priyank V. Kumar, Neelkanth M. Bardhan, Sefaattin Tongay, Junqiao Wu, Angela M. Belcher and Jeffrey C. Grossman. Scalable enhancement of graphene oxide properties by thermally driven phase transformation. // Nature chemistry. – 2014. – Vol 6. – Р. 151-157.
16. JIA Tian-Tiana, Sun Bao-Zhenb, Lin Hua-Xianga, LI Yia, Chen Wen-Kaia, Chinese Journal of Structural Chemistry, 32(10), 1475–1484, (2013).
17. Si Zhou & Angelo Bongiorno, Scientific Reports, 3, 2484, 1-6, (2013).

Жүктелулер

Как цитировать

Kuanyshbekov, T., Tulegenova М., Baigarinova, G., Guseinov, N., & Ilyin, A. (2017). Investigation of temperature influence on the process of reduction of graphene oxide. ҚазНУ Хабаршысы. Физика сериясы, 61(2), 18–23. вилучено із https://bph.kaznu.kz/index.php/zhuzhu/article/view/528

Шығарылым

Бөлім

Физика конденсированного состояния и проблемы материаловедения. Нанонаука

Статті цього автора (авторів), які найбільше читають

1 2 > >>