Механизм процесса горения, получаемого из угля синтез-газа

Авторы

  • V.E. Messerle Институт проблем горения, Казахстан, г. Алматы
  • E.F. Ossadchaya НИИЭТФ Казахский национальный университет им.аль-Фараби, Казахстан, г.Алматы
  • N.A. Slavinskaya Институт технологии горения, Германский аэрокосмический центр, ФРГ, г.Штутгарт
  • A.B. Ustimenko НИИЭТФ Казахский национальный университет им.аль-Фараби, Казахстан, г.Алматы
        73 28

Ключевые слова:

синтез-газ, газификация, горение, кинетический механизм

Аннотация

В работе представлены схема получения синтез-газа плазменной газификацией твердых топлив и подробный анализ существующей литературы по горению синтез-газа (СО+Н2). Проанализированы и систематизированы основные известные кинетические механизмы окисления синтез-газа. Подобраны экспериментальные данные, использованные для их тестирования и найдены параметры применимости этих механизмов. Найдены и проанализированы экспериментальные данные по задержке воспламенения, скорости распространения пламени и концентрациям компонентов системы H2/CO/О2. Для этих данных проведена оптимизация кинетических параметров основных реакций механизма окисления синтез-газа. Модифицированные значения констант скоростей реакций остались при этом в пределах заданного интервала погрешности. Результирующий кинетический механизм горения синтез-газа находится в хорошем соответствии со всеми принятыми к рассмотрению исходными данными.

Библиографические ссылки

1 Key World Energy Statistics. – International Energy Agency, 2012. – 80 p. (www.iea.org).

2 Messerle V.E., Ustimenko A.B. Solid Fuel Plasma Gasification / Advanced Combustion and Aerothermal Technologies, N.Syred and A.Khalatov (eds.). – Springer, 2007. – P.141-156.

3 Lokvud F.CH., Messerle V.Ye., Umbetkaliyev K.A., Ustimenko A.B. Plazmennaya gazifikatsiya vysokozol’nykh energeticheskikh ugley // Goreniye i plazmokhimiya. – 2008. – T.6, №1. – S.50-55.

4 Messerle V.Ye., Ustimenko A.B. Plazmokhimicheskiye tekhnologii pererabotki topliv // Izvestiya vuzov. Khimiya i khimicheskaya tekhnologiya. – 2012. –T. 55, vyp. 4. – S. 30-34.

5 Messerle V.E., Ustimenko A.B., Slavinskaya N.A., Riedel U. Influence of coal rank on the process of plasma aided gasification // ASME Turbo Expo 2012, Bella Center, Copenhagen, Denmark, June 11-15, 2012. Final program. – P. 39. Proceedings N. GT2012-68701. – P.1-10.

6 Bol’shova T.A., Shmakov A.G., Yakimov S.A., Knyaz’kov D.A., Korobeynichev O.P. Cokrashchennyy kineticheskiy mekhanizm goreniya sintez-gaza pri povyshennykh temperaturakh i vysokom davlenii // Fizika goreniya i vzryva. – 2012. – N 5. – C. 109-121.

7 Starik A.M., Titova N.S., Sharipov A.S. Detal’nyye kineticheskiye modeli okisleniya vodoroda i sintez-gaza v vozdukhe /Neravnovesnyye fiziko-khimicheskiye protsessy v gazovykh potokakh i novyye printsipy organizatsii goreniya. Pod red. A. M. Starika. – M.: Torus-Press, 2011. – S. 25–52.

8 Starik A.M., Titova N.S., Sharipov A.S. Teoreticheskiy analiz kinetiki reaktsiy v smesyakh CO–H2–O2 s uchastiyem elektronnovozbuzhdennykh
molekul O2. / Neravnovesnyye fiziko-khimicheskiye protsessy v gazovykh potokakh i novyye printsipy organizatsii goreniya. Pod red. A. M. Starika. – M.: Torus-Press, 2011. – S. 160–177.

9 Yetter R.A., Dryer F.L., Rabitz H. A Comprehensive Reaction Mrchanism for Carbon Monoxide/Hydroge/Oxygen Kinetics // Combust. Sci. and Techn. – 1991. – Vol.79. – N 1. – P.97-128.

10 Hughes K.J., Turanyi T., Clague A.R., Pilling M.J. Development and Testing of a Comprehensive Chemical Mechanism for the Oxidation of Methane // Int. J. Chem. Kinet. – 2001. – Vol. 33. – P. 513-538.

11 Zsély I.Gy., Zádor J., Turányi T. Uncertainty analysis of updated hydrogen and carbon monoxide oxidation mechanisms // Proc. Combust. Inst. – 2005. – Vol. 30. – P. 1273-1281.

12 Davis S.G., Joshi A.V., Wang H., Egolfopoulos F. An optimized kinetic model of H2/CO combustion // Proc. Combust. Inst. – 2005. – Vol. 30. – P. 1283-1292.

13 Saxena P., Williams F.A. Testing a small detailed chemical-kinetic mechanism for the combustion of hydrogen and carbon monoxide // Combust. Flame. – 2006. – Vol.145. – P. 316–323.

14 Petrova M.V., Williams F.A. A small detailed chemical-kinetic mechanism for hydrocarbon combustion // Combust. Flame. – 2006. – Vol. 144. – P. 526-544.

15 Zhao Li J., Kazakov Z.W., Chaos A., Dryer M., Scire F.L. A comprehensive kinetic mechanism for CO, CH2O and CH3OH combustion // Int. J. Chem. Kinet. – 2007. – Vol.39. – P.109-136.

16 Chaos M., Dryer F.L. Syngas Combustion Kinetics and Applications // Combustion Science and Technology. – 2008. – Vol. 180. – P.1053–1096.

17 Sun H., Yang S.I., Jomaas G., Law C.K. High-pressure laminar flame speeds and kinetic modeling of carbon monoxide/hydrogen combustion // Proc. Combust. Inst. – 2007. – Vol. 31. – P. 439-446.

18 Frassoldati A., Faravelli T., Ranzi E. The ignition, combustion and flame structure of carbon monoxide/hydrogen mixtures. Note 1: Detailed kinetic modeling of syngas combustion also in presence of nitrogen compounds // International Journal of Hydrogen Energy. – 2007. – Vol.32. – P.3471 – 3485.

19 Cong T.Le, Dagaut P. Experimental and Detailed Kinetic Modeling of the Oxidation of Methane and Methane/Syngas Mixtures and Effect of Carbon Dioxide Addition // Comb. Sci. and Technology. – 2008. – Vol.180, No 10. – P.2046 -2091.

20 Dean A.M., Steiner D.C., Wang E.E. A shock tube study of the H2/O2/CO/Ar and H2/N2O/CO/Ar Systems: Measurement of the rate constant for H + N2O = N2 + OH. Combust. Flame. – 1978. – Vol.32. – P. 73–83.

21 Yetter R.A., Rabitz H., Dryer F.L. Flow Reactor Studies of Carbon Monoxide/ Hydrogen/Oxygen Kinetics // Combust. Sci. Technol. – 1991. – Vol.79. – P.129-140.

22 Arustamyan A.M., Shakhnazaryan I.K., Philpossyan A.G., Nalbandyan A.B. The kinetics and the mechanism of the oxidation of carbon monoxide in the presence of hydrogen // Int. J. Chem. Kinet. – 1980. – N 12. – P.55-75.

23 Smith M.G.P., et al. GRI-Mech 3.0. http://www.me.berkeley.edu/gri_mech/>, 2000.

24 McLean I.C., Smith D.B., Taylor S.C. The use of carbon monoxide/hydrogen burning velocities to examine the rate of the CO+OH reaction // Proc. Comb. Inst. – 1994. – Vol.25. – P. 749–757.

25 Vagelopoulos C.M., Egolfopoulos F.N. Laminar flame speeds and extinction strain rates of mixtures of carbon monoxide with hydrogen, methane, and air. // Proc. Comb. Inst. – 1994. – Vol.25. – P. 1317–1323.

26 Kim T.J., Yetter R.A., Dryer F.L. New results on moist CO oxidation: high pressure, high temperature experiments and comprehensive kinetic modelling // Proc. Combust. Inst. – 1994. – Vol.25. – P.759–766.

27 Lewis B., G. von Elbe. Combustion, Flames, and Explosions of Gases. Third ed. – New York: Academic Press, 1987. – 398 p.

28 Gardiner W.C. jr., Farland M.Mc, Morinaga K., Takeyama T., Walker B.F. Ignition delays in H2-O2-CO-Ar mixtures // J. Phys. Chem. – 1971. – Vol.75. – P. 1504-1509.

29 Huang Y., J.Sung C., Eng J.A. Laminar flame speeds of primary reference fuels and reformer gas mixtures // Combust Flame. – 2004. – Vol.139. – P. 239-251.

30 Mueller M.A., Yetter R.A., Dryer F.L. Flow reactor studies and kinetic modeling of the H2/O2/NOX and CO/H2O/O2/NOX reactions // Int. J. Chem. Kinet. – 1999. – Vol.31. – P. 705-724.

31 Mittal G.C.J., Sung, R.A. Yetter. Autoignition of H₂/CO at elevated pressures in a rapid compression machine // Int. J. Chem. Kinet. – 2006. – Vol.38. – P. 516-529.

32 Sivaramakrishnan R., Comandini A., Tranter R.S., Brezinsky K., Davis S.G., Wang H. Combustion of CO/H2 mixtures at elevated pressures // Proc. Combust. Inst. – 2007. – Vol.31. – P. 429–437.

33 Alzueta M.U., Bilbao R., Glarborg P. Inhibition and sensitization of fuel oxidation by SO2 // Combust Flame. – 2001. – Vol.127. – P. 2234-2251.

34 Hasegawa T., Sato M..Study of Ammonia Removal from Coal-Gasified Fuel // Combust Flame. – 1998. – Vol.114. – P. 246-258.

35 Walton S.M., He X., Zigler B.T., Wooldridge M.S. An experimental investigation of the ignition properties of hydrogen and carbon monoxide mixtures for syngas turbine applications. // Proc. Combust. Instit.. – 2007. – Vol.31. – P. 3147-3154.

36 Burke M.P., Qin X., Ju Y., Dryer F.L. Measurements of Hydrogen Syngas Flame Speeds at Elevated Pressures // Proceedings of the Fifth US Combustion Meeting, San Diego, CA, 2007, Mar. 25–28. – Paper No. A16.

37 Fotache C.G., Tan Y., Sung C.J., Law C.K. Ignition of CO/H2/N2 versus heated air in counterflow: experimental and modeling results. // Comb. and Flame. – 2000. – Vol.120. – P. 417–426.

38 Skinner G.B., Ringrose G.H. Ignition delays of a hydrogen-oxygen-argon mixture at relatively low temperature // J. Chem. Phys. – 1965. – Vol.42. – P. 2190–2192.

39 Schott G.L., Kinsey J.L. Induction times in the hydrogen-oxygen reaction // J. Chem. Phys. – 1958. – Vol.29 (5). – P. 1177–1182.

40 Egolfopoulos F.N., Law C.K. An experimental and computational study of the burning rates of ultra-lean to moderately-rich H2/O2/N2 laminar flames with pressure variations // Proc. Comb. Inst. – 1991. – Vol.23. –P. 333–340.

41 Vagelopoulos C.M., Egolfopoulos F.N., Law C.K. Further considerations on the determination of laminar flame speeds with the counterflow twin-flame technique // Proc. Comb. Inst. – 1994. – Vol.25. – P. 1341–1347.

42 Karpov V.P., Lipatnikov A.N., Wolanski P. Finding the markstein number using the measurements of expanding spherical laminar flames // Combust. Flame. – 1997. – Vol.109 (3). – P. 436–448.

43 Kalitan D.M., Petersen E.L. Ignition and Oxidation of Lean CO/H2 Fuel Blends in Air. AIAA Paper 2005-3767, 41st AIAA/ ASME/ASEE Joint Propulsion Conference & Exhibit, July 10-13, 2005, Tucson, AZ.

44 Ranzi E., Sogaro A., Gaffuri P., Pennati G., Faravelli T.. A Wide Range Modeling Study of Methane Oxidation // Combust Sci Tech. – 1994. – Vol.96 (4–6). – P. 279–325.

45 Dagaut P., Lecomte F., Mieritz J., Glarborg P. Experimental and kinetic modeling study of the effect of NO and SO₂ on the oxidation of CO H₂ mixtures // Int. J. Chem. Kinet. – 2003. – Vol.35. – P. 564-575.

46 Glarborg P., Kubel D., Dam-Johansen K., Chiang H., Bozzelli J.W. Impact of SO2 and NO on CO oxidation under post-flame conditions // Int J Chem Kinet. – 1996. – Vol.28. – P. 773-790.

47 Hassan M.I., Aung K.T., Faeth G.M. Properties of Laminar Premixed CO/H/Air Flames at Various Pressures // Journal of Propulsion and Power. – 1997. – Vol.13 (2). – P. 239-245.

48 Vandooren J., P.J. Van Tiggelen, Pauwels J.-F. Experimental and modeling studies of a rich H2/CO/N2O/Ar flame. // Combust Flame. – 1997. – Vol.109. – P. 647-668.

49 Natarajan J., Kochar Y., Lieuwen T., Seitzman J. Proceedings of the Combustion Institute. – 2009. – Vol.32. – P.1261–1268.

50 Kee R.J., Rupley F.M., Miller J.A.. Chemkin-II: a FORTRAN Chemical Kinetics Package for the Analysis of GasPhase Chemical Kinetics // Sandia Laboratories Report, SAND89-8009B, 1993.

51 Kalitan D.M., Mertens J.D., Crofton M.W., Petersen E.L. Ignition and oxidation of lean CO/H2 fuel blends in air // Journal of Propulsion and Power. – 2007. – Vol.23. – P. 1291–1303.

52 Petersen E.L., Kalitan D.M., Barrett A.B., Reehal S.C., Mertens J.D., Beerer D.J., Hack R.L., McDonnell V.G. New syngas/air ignition data at lower temperature and elevated pressure and comparison to current kinetics models // Combustion and Flame. – 2007.– Vol.149. – P.244–247.

53 Herzler J., Naumann C. Shock tube study of the ignition of lean. CO/H2 fuel blends at intermediate temperatures and high pressure // Combust. Sci. and Tech. – 2008. – Vol.180. – P.2015-2028.

Загрузки

Как цитировать

Messerle, V., Ossadchaya, E., Slavinskaya, N., & Ustimenko, A. (2014). Механизм процесса горения, получаемого из угля синтез-газа. Вестник. Серия Физическая (ВКФ), 49(2), 57–72. извлечено от https://bph.kaznu.kz/index.php/zhuzhu/article/view/788

Выпуск

Раздел

Теплофизика и теоретическая теплотехника