Mechanism of burning synthesis gas from coal

Authors

  • V.E. Messerle Institute of Combustion Problems, Kazakhstan, Almaty
  • E.F. Ossadchaya IETP Al-Farabi Kazakh National University, Kazakhstan, Almaty
  • N.A. Slavinskaya Institute of Combustion Technology, German Aerospace Center, Germany, Stuttgart
  • A.B. Ustimenko IETP Al-Farabi Kazakh National University, Kazakhstan, Almaty
        40 18

Keywords:

Synthesis gas, gasification, combustion, kinetic mechanism

Abstract

The paper presents the scheme for producing synthesis gas by plasma gasification of solid fuels and detailed analysis of the existing literature on combustion synthesis gas (CO + H2). Analyzed and systematized the main known kinetic mechanisms of oxidation of synthesis gas. Chosen the experimental data used to test them and found the parameters of applicability of these mechanisms. Found and analyzed experimental data on ignition delay, flame spread rate and concentrations of components H2/CO/O2. For these data, the optimization of the kinetic parameters of the basic mechanism of oxidation reactions of synthesis gas. Modified values of reaction rate constants were thus in the interval error. The resulting kinetic mechanism of combustion synthesis gas is in good agreement with all approved to consider the source data.

References

1 Key World Energy Statistics. – International Energy Agency, 2012. – 80 p. (www.iea.org).

2 Messerle V.E., Ustimenko A.B. Solid Fuel Plasma Gasification / Advanced Combustion and Aerothermal Technologies, N.Syred and A.Khalatov (eds.). – Springer, 2007. – P.141-156.

3 Lokvud F.CH., Messerle V.Ye., Umbetkaliyev K.A., Ustimenko A.B. Plazmennaya gazifikatsiya vysokozol’nykh energeticheskikh ugley // Goreniye i plazmokhimiya. – 2008. – T.6, №1. – S.50-55.

4 Messerle V.Ye., Ustimenko A.B. Plazmokhimicheskiye tekhnologii pererabotki topliv // Izvestiya vuzov. Khimiya i khimicheskaya tekhnologiya. – 2012. –T. 55, vyp. 4. – S. 30-34.

5 Messerle V.E., Ustimenko A.B., Slavinskaya N.A., Riedel U. Influence of coal rank on the process of plasma aided gasification // ASME Turbo Expo 2012, Bella Center, Copenhagen, Denmark, June 11-15, 2012. Final program. – P. 39. Proceedings N. GT2012-68701. – P.1-10.

6 Bol’shova T.A., Shmakov A.G., Yakimov S.A., Knyaz’kov D.A., Korobeynichev O.P. Cokrashchennyy kineticheskiy mekhanizm goreniya sintez-gaza pri povyshennykh temperaturakh i vysokom davlenii // Fizika goreniya i vzryva. – 2012. – N 5. – C. 109-121.

7 Starik A.M., Titova N.S., Sharipov A.S. Detal’nyye kineticheskiye modeli okisleniya vodoroda i sintez-gaza v vozdukhe /Neravnovesnyye fiziko-khimicheskiye protsessy v gazovykh potokakh i novyye printsipy organizatsii goreniya. Pod red. A. M. Starika. – M.: Torus-Press, 2011. – S. 25–52.

8 Starik A.M., Titova N.S., Sharipov A.S. Teoreticheskiy analiz kinetiki reaktsiy v smesyakh CO–H2–O2 s uchastiyem elektronnovozbuzhdennykh
molekul O2. / Neravnovesnyye fiziko-khimicheskiye protsessy v gazovykh potokakh i novyye printsipy organizatsii goreniya. Pod red. A. M. Starika. – M.: Torus-Press, 2011. – S. 160–177.

9 Yetter R.A., Dryer F.L., Rabitz H. A Comprehensive Reaction Mrchanism for Carbon Monoxide/Hydroge/Oxygen Kinetics // Combust. Sci. and Techn. – 1991. – Vol.79. – N 1. – P.97-128.

10 Hughes K.J., Turanyi T., Clague A.R., Pilling M.J. Development and Testing of a Comprehensive Chemical Mechanism for the Oxidation of Methane // Int. J. Chem. Kinet. – 2001. – Vol. 33. – P. 513-538.

11 Zsély I.Gy., Zádor J., Turányi T. Uncertainty analysis of updated hydrogen and carbon monoxide oxidation mechanisms // Proc. Combust. Inst. – 2005. – Vol. 30. – P. 1273-1281.

12 Davis S.G., Joshi A.V., Wang H., Egolfopoulos F. An optimized kinetic model of H2/CO combustion // Proc. Combust. Inst. – 2005. – Vol. 30. – P. 1283-1292.

13 Saxena P., Williams F.A. Testing a small detailed chemical-kinetic mechanism for the combustion of hydrogen and carbon monoxide // Combust. Flame. – 2006. – Vol.145. – P. 316–323.

14 Petrova M.V., Williams F.A. A small detailed chemical-kinetic mechanism for hydrocarbon combustion // Combust. Flame. – 2006. – Vol. 144. – P. 526-544.

15 Zhao Li J., Kazakov Z.W., Chaos A., Dryer M., Scire F.L. A comprehensive kinetic mechanism for CO, CH2O and CH3OH combustion // Int. J. Chem. Kinet. – 2007. – Vol.39. – P.109-136.

16 Chaos M., Dryer F.L. Syngas Combustion Kinetics and Applications // Combustion Science and Technology. – 2008. – Vol. 180. – P.1053–1096.

17 Sun H., Yang S.I., Jomaas G., Law C.K. High-pressure laminar flame speeds and kinetic modeling of carbon monoxide/hydrogen combustion // Proc. Combust. Inst. – 2007. – Vol. 31. – P. 439-446.

18 Frassoldati A., Faravelli T., Ranzi E. The ignition, combustion and flame structure of carbon monoxide/hydrogen mixtures. Note 1: Detailed kinetic modeling of syngas combustion also in presence of nitrogen compounds // International Journal of Hydrogen Energy. – 2007. – Vol.32. – P.3471 – 3485.

19 Cong T.Le, Dagaut P. Experimental and Detailed Kinetic Modeling of the Oxidation of Methane and Methane/Syngas Mixtures and Effect of Carbon Dioxide Addition // Comb. Sci. and Technology. – 2008. – Vol.180, No 10. – P.2046 -2091.

20 Dean A.M., Steiner D.C., Wang E.E. A shock tube study of the H2/O2/CO/Ar and H2/N2O/CO/Ar Systems: Measurement of the rate constant for H + N2O = N2 + OH. Combust. Flame. – 1978. – Vol.32. – P. 73–83.

21 Yetter R.A., Rabitz H., Dryer F.L. Flow Reactor Studies of Carbon Monoxide/ Hydrogen/Oxygen Kinetics // Combust. Sci. Technol. – 1991. – Vol.79. – P.129-140.

22 Arustamyan A.M., Shakhnazaryan I.K., Philpossyan A.G., Nalbandyan A.B. The kinetics and the mechanism of the oxidation of carbon monoxide in the presence of hydrogen // Int. J. Chem. Kinet. – 1980. – N 12. – P.55-75.

23 Smith M.G.P., et al. GRI-Mech 3.0. http://www.me.berkeley.edu/gri_mech/>, 2000.

24 McLean I.C., Smith D.B., Taylor S.C. The use of carbon monoxide/hydrogen burning velocities to examine the rate of the CO+OH reaction // Proc. Comb. Inst. – 1994. – Vol.25. – P. 749–757.

25 Vagelopoulos C.M., Egolfopoulos F.N. Laminar flame speeds and extinction strain rates of mixtures of carbon monoxide with hydrogen, methane, and air. // Proc. Comb. Inst. – 1994. – Vol.25. – P. 1317–1323.

26 Kim T.J., Yetter R.A., Dryer F.L. New results on moist CO oxidation: high pressure, high temperature experiments and comprehensive kinetic modelling // Proc. Combust. Inst. – 1994. – Vol.25. – P.759–766.

27 Lewis B., G. von Elbe. Combustion, Flames, and Explosions of Gases. Third ed. – New York: Academic Press, 1987. – 398 p.

28 Gardiner W.C. jr., Farland M.Mc, Morinaga K., Takeyama T., Walker B.F. Ignition delays in H2-O2-CO-Ar mixtures // J. Phys. Chem. – 1971. – Vol.75. – P. 1504-1509.

29 Huang Y., J.Sung C., Eng J.A. Laminar flame speeds of primary reference fuels and reformer gas mixtures // Combust Flame. – 2004. – Vol.139. – P. 239-251.

30 Mueller M.A., Yetter R.A., Dryer F.L. Flow reactor studies and kinetic modeling of the H2/O2/NOX and CO/H2O/O2/NOX reactions // Int. J. Chem. Kinet. – 1999. – Vol.31. – P. 705-724.

31 Mittal G.C.J., Sung, R.A. Yetter. Autoignition of H₂/CO at elevated pressures in a rapid compression machine // Int. J. Chem. Kinet. – 2006. – Vol.38. – P. 516-529.

32 Sivaramakrishnan R., Comandini A., Tranter R.S., Brezinsky K., Davis S.G., Wang H. Combustion of CO/H2 mixtures at elevated pressures // Proc. Combust. Inst. – 2007. – Vol.31. – P. 429–437.

33 Alzueta M.U., Bilbao R., Glarborg P. Inhibition and sensitization of fuel oxidation by SO2 // Combust Flame. – 2001. – Vol.127. – P. 2234-2251.

34 Hasegawa T., Sato M..Study of Ammonia Removal from Coal-Gasified Fuel // Combust Flame. – 1998. – Vol.114. – P. 246-258.

35 Walton S.M., He X., Zigler B.T., Wooldridge M.S. An experimental investigation of the ignition properties of hydrogen and carbon monoxide mixtures for syngas turbine applications. // Proc. Combust. Instit.. – 2007. – Vol.31. – P. 3147-3154.

36 Burke M.P., Qin X., Ju Y., Dryer F.L. Measurements of Hydrogen Syngas Flame Speeds at Elevated Pressures // Proceedings of the Fifth US Combustion Meeting, San Diego, CA, 2007, Mar. 25–28. – Paper No. A16.

37 Fotache C.G., Tan Y., Sung C.J., Law C.K. Ignition of CO/H2/N2 versus heated air in counterflow: experimental and modeling results. // Comb. and Flame. – 2000. – Vol.120. – P. 417–426.

38 Skinner G.B., Ringrose G.H. Ignition delays of a hydrogen-oxygen-argon mixture at relatively low temperature // J. Chem. Phys. – 1965. – Vol.42. – P. 2190–2192.

39 Schott G.L., Kinsey J.L. Induction times in the hydrogen-oxygen reaction // J. Chem. Phys. – 1958. – Vol.29 (5). – P. 1177–1182.

40 Egolfopoulos F.N., Law C.K. An experimental and computational study of the burning rates of ultra-lean to moderately-rich H2/O2/N2 laminar flames with pressure variations // Proc. Comb. Inst. – 1991. – Vol.23. –P. 333–340.

41 Vagelopoulos C.M., Egolfopoulos F.N., Law C.K. Further considerations on the determination of laminar flame speeds with the counterflow twin-flame technique // Proc. Comb. Inst. – 1994. – Vol.25. – P. 1341–1347.

42 Karpov V.P., Lipatnikov A.N., Wolanski P. Finding the markstein number using the measurements of expanding spherical laminar flames // Combust. Flame. – 1997. – Vol.109 (3). – P. 436–448.

43 Kalitan D.M., Petersen E.L. Ignition and Oxidation of Lean CO/H2 Fuel Blends in Air. AIAA Paper 2005-3767, 41st AIAA/ ASME/ASEE Joint Propulsion Conference & Exhibit, July 10-13, 2005, Tucson, AZ.

44 Ranzi E., Sogaro A., Gaffuri P., Pennati G., Faravelli T.. A Wide Range Modeling Study of Methane Oxidation // Combust Sci Tech. – 1994. – Vol.96 (4–6). – P. 279–325.

45 Dagaut P., Lecomte F., Mieritz J., Glarborg P. Experimental and kinetic modeling study of the effect of NO and SO₂ on the oxidation of CO H₂ mixtures // Int. J. Chem. Kinet. – 2003. – Vol.35. – P. 564-575.

46 Glarborg P., Kubel D., Dam-Johansen K., Chiang H., Bozzelli J.W. Impact of SO2 and NO on CO oxidation under post-flame conditions // Int J Chem Kinet. – 1996. – Vol.28. – P. 773-790.

47 Hassan M.I., Aung K.T., Faeth G.M. Properties of Laminar Premixed CO/H/Air Flames at Various Pressures // Journal of Propulsion and Power. – 1997. – Vol.13 (2). – P. 239-245.

48 Vandooren J., P.J. Van Tiggelen, Pauwels J.-F. Experimental and modeling studies of a rich H2/CO/N2O/Ar flame. // Combust Flame. – 1997. – Vol.109. – P. 647-668.

49 Natarajan J., Kochar Y., Lieuwen T., Seitzman J. Proceedings of the Combustion Institute. – 2009. – Vol.32. – P.1261–1268.

50 Kee R.J., Rupley F.M., Miller J.A.. Chemkin-II: a FORTRAN Chemical Kinetics Package for the Analysis of GasPhase Chemical Kinetics // Sandia Laboratories Report, SAND89-8009B, 1993.

51 Kalitan D.M., Mertens J.D., Crofton M.W., Petersen E.L. Ignition and oxidation of lean CO/H2 fuel blends in air // Journal of Propulsion and Power. – 2007. – Vol.23. – P. 1291–1303.

52 Petersen E.L., Kalitan D.M., Barrett A.B., Reehal S.C., Mertens J.D., Beerer D.J., Hack R.L., McDonnell V.G. New syngas/air ignition data at lower temperature and elevated pressure and comparison to current kinetics models // Combustion and Flame. – 2007.– Vol.149. – P.244–247.

53 Herzler J., Naumann C. Shock tube study of the ignition of lean. CO/H2 fuel blends at intermediate temperatures and high pressure // Combust. Sci. and Tech. – 2008. – Vol.180. – P.2015-2028.

Downloads

Published

2014-06-12

Issue

Section

Thermal Physics and Theoretical Thermal Engineering