# Mathematical modeling of the barrier discharge point-plane geometry in nitrogen

### Abstract

Two-dimensional model of the barrier discharge nitrogen for point-plane geometry was made up on the basis of the equation of continuity and the Poisson equation for the electric field. The system of differential equations with boundary and initial conditions were solved by iteratively method UMFPACK in the programming environment COMSOL Multiphysics 3.5. There were determined the results of calculation of electric and kinetic characteristics: potential and electric field, and the electron temperature and density. For the proposed conditions it was showed that the discharge characteristics determined by the distribution of the alternating electric field, which is great most of the period from the bare metal electrode, due to its curvature. Another characteristic of the discharge is the formation of a positive space charge on the dielectric surface, the magnitude of which varies during the period. The proposed model can be used for numerical simulation of the discharge cells used in electrocardiography.### References

1 Hagelaar G.J.M. and Pitchford L.C. Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models // Plasma Sources Sci. Technol. – 2005. – Vol. 14. – P. 722-733.

2 J.T. Moseley, R.M. Snuggs, D.V. Martin, and E.W. McDaniel. Mobilities, Diffusion coefficients, and reaction rates of mass-indentified nitrogen ions in nitrogen. Phys.rev. 1969, V. 178, No.1. pp. 240-248.

3 Hirschfelder J. O., Curtiss Ch.F. and Bird R.B. Molecular theory of gases and liquids. – New York : John Wiley and Sons, – London: Chapman and Hall, – 1954.

4 Ю. С. Акишев, М.Е. Грушин, В.Б. Каральник, А.В. Петряков, Н.И. Трушкин. О вспышке розового свечения в активном азоте после окончания его возбуждения. Физика плазмы, 2007, т. 33, № 9, с. 828-845.

2 J.T. Moseley, R.M. Snuggs, D.V. Martin, and E.W. McDaniel. Mobilities, Diffusion coefficients, and reaction rates of mass-indentified nitrogen ions in nitrogen. Phys.rev. 1969, V. 178, No.1. pp. 240-248.

3 Hirschfelder J. O., Curtiss Ch.F. and Bird R.B. Molecular theory of gases and liquids. – New York : John Wiley and Sons, – London: Chapman and Hall, – 1954.

4 Ю. С. Акишев, М.Е. Грушин, В.Б. Каральник, А.В. Петряков, Н.И. Трушкин. О вспышке розового свечения в активном азоте после окончания его возбуждения. Физика плазмы, 2007, т. 33, № 9, с. 828-845.

Published

2014-12-20

How to Cite

KODANOVA, S.K.; KENZHEBEKOVA, A.I..
Mathematical modeling of the barrier discharge point-plane geometry in nitrogen.

**Recent Contributions to Physics (Rec.Contr.Phys.)**, [S.l.], v. 51, n. 4, p. 90-95, dec. 2014. ISSN 2663-2276. Available at: <https://bph.kaznu.kz/index.php/zhuzhu/article/view/855>. Date accessed: 24 oct. 2020.
Section

Plasma Physics