Ионный синтез и свойства пленок карбида кремния и углерода. Иондық синтез жəне көміртегі мен кремний карбиді пленкаларының қасиеттері

Авторы

  • N. B. Beisenkhanov Казахстанско-Британский технический университет
  • I. K. Beisembetov
  • K. Kh. Nussupov
  • S. K. Zharikov
  • B. K. Kenzhaliev
  • T. K. Akhmetov
  • B. Zh. Seitov
        73 44

Ключевые слова:

карбид кремния, ионная имплантация, структура, кристаллизация, , кремний карбиді, иондық имплантация, құрылым, кристалдану.

Аннотация

Линейный характер уменьшения количества Si-C-связей в однородных слоях карбида кремния на кремнии с увеличением длительности изотермического (1200С) отжига свидетельствует о независимости скорости распада SiC от степени удаленности фронта окисления от поверхности пленки. Смещение минимума SiC-пика ТО-фононов в область выше 800 см-1, уменьшение амплитуды и исчезновение пика LO-фононов в ИК-спектрах в процессе длитель- ного отжига трактуются малыми размерами кристаллитов. Методом рентгеновской рефлектометрии определены параметры алмазоподобной углеродной пленки, полученной магнетронным распылением. Изотермиялық күйдіру (1200С) ұзақтылығының артуымен кремний бетіндегі кремний карбидінің біртекті қабаттарындағы Si-C байланыстар мөлшері кемуінің сызықты сипаты SiC ыдырау жылдамдығы тотығу фронтының пленка бетінен қашықтау дəрежесіне тəуелсіз екендігін көрсетеді. Ұзақ уақыт күйдіру процесінде ИҚ-спектрлердегі LO-фонондар шыңының амплитудасының кемуі жəне жойылуы, ТО-фонондардаң SiC-шыңдарының минимумының 800 см-1 аймақтан жоғары ығысуы кристаллиттердің кіші өлшемдерімен талқыланды. Рентгендік рефлектометрия əдісімен магнетрондық ыдырату арқылы алынған алмазтекті көміртегілік пленканың параметрлері анықталды.

Библиографические ссылки

1 Liao F., Girshick S.L., Mook W.M., Gerberich W.W., Zachariah M.R. Superhard nanocrystalline silicon carbide films // Appl. Phys. Lett. – 2005. – V. 86. – P. 171913–171915.

2 Afanas'yev A.V., Il'in V.A., Korlyakov A.V., Lebedev A.O., Luchinin V.V., Tairov YU.M. Karbid kremniya. Vklad SPbGETU «LETI». Priznaniye i perspektivy // V kn. Fizika i Tekhnologiya mikro- i nanosistem.– Pod redaktsiyey Luchinina V.V. i Malinovskogo V.V. – Sankt-Peterburg: Izd. "Russkaya kollektsiya". – 2011. – S. 50–86.

3 Semenov A.V., Lopin A.V., Puzikov V.M., Baumer V.N., Dmitruk I.N. Fabrication of heterostructures based on layered nanocrystalline silicon carbide polytypes // Semiconductors. – 2010. – V. 44. – 6. – P. 816–823.

4 Oguri K., Sekigawa T. Heat resistant material and hot structure member both space shuttle, space shuttle, and method for producing heat resistant material for space shuttle // United State Patent. – Sep.16, 2004. – Pub. № US 2004/0180242 A1.

5 Yаn Н., Wang В., Song Х.М., Таn L.W., Zhang S.J., Chen G.H., Wong S.P., Kwok R.W.M., Lео W.M.L. Study on SiC layers synthesized with carbon ion beam at low substrate temperature // Diamond and related materials. – 2000. – V. 9. – P. 1795– 1798.

6 Chen D., Wong S.P., Yang Sh., Mо D. Composition, structure and optical properties of SiC buried layer formed by high dose carbon implantation into Si using metal vapor vacuum arc ion source // Thin Solid Films. – 2003. – V. 426. – Р.1–7.

7 Liangdeng Y., Intarasiri S., Kamwanna T., Singkarat S. Ion beam synthesis and modification of silicon carbide // In book: Ion beam applications in surface and bulk modification of insulators. –Austria, Vienna: IAEA-TECDOC-1607. – 2008. – P. 63–92.

8 Borders J.A., Picraux S.T., Beezhold W. Formation of SiC in silicon by ion implantation // Appl.Phys.Lett. – 1971. – V. 18. – 11. – Р. 509–511.

9 Bayazitov R.M., Haibullin I.B., Batalov R.I., Nurutdinov R.M., Antonova L.Kh., Aksenov V.P., Mikhailova G.N. Structure and photoluminescent properties of SiC layers on Si, synthesized by pulsed ion-beam treatment // Nucl. Instrum. and Meth. in Phys. Res. В. – 2003. – V. 206. – P. 984–988.

10 Serre C., Romano-Rodríguez A., Pérez-Rodríguez A., Morante J. R., Fonseca L., Acero M.C., Kögler R. and Skorupa W. β- SiC on SiO2 formed by ion implantation and bonding for micromechanics applications // Sensors and Actuators A (Physical). –1999. – 74. – №1–3. – P.169–173.

11 Tetelbaum D.I., Mikhaylov A.N., Belov A.I., Vasiliev V.K., Kovalev A.I., Wainshtein D.L., Golan Y., Osherov A. Luminescence and structure of nanosized inclusions formed in SiO2 layers under double implantation of silicon and carbon ions // Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques. – 2009. – V. 3. – № 5. – P. 702–708.

12 Nussupov K. Kh. and Beisenkhanov N.B. The Formation of Silicon Carbide in the SiCx Layers (x = 0.03–1.4) Formed by Multiple Implantation of C Ions in Si // In book: Silicon Carbide - Materials, Processing and Applications in Electronic Devices. – Moumita Mukherjee (Ed.). Chapter 4. – Rijeka, Croatia: InTech. – 2011. – P. 69-114.

13 Nussupov K.Kh., Beisenkhanov N.B., Valitova I.V., Mit’ K.A., Mukhamedshina D.M., Dmitrieva E.A. Structure properties of carbon implanted silicon layers // Journal of Materials Science: Materials in Electronics. – 2008. – 19. – Р. 254–262.

14 Gerasimenko N.N., Kuznetsov O.N., Lezheyko L.V., Lyubopytova Ye.V., Smirnov L.S., Edel'man F.L. Nekotoryye svoystva plenok SiC, poluchennykh ionnym vnedreniyem v strukture Al-SiC-Si // Mikroelektronika. – 1974. – T. 3. – Vyp. 5. – S. 467 – 468.

15 Beisenkhanov N. B. Crystallization of β-SiC in thin SiCx layers (x = 0.03–1.4) synthesized by multiple implantation of carbon ions into silicon // Technical Physics. – 2011. – V. 56. – № 2. – Р. 274–281.

16 Gupta S.K., Akhtar J. Thermal Oxidation of Silicon Carbide (SiC) – Experimentally Observed Facts. // In book: Silicon Carbide – Materials, Processing and Applications in Electronic Devices. – Moumita Mukherjee (Ed.). Chapter 9. – Rijeka, Croatia: InTech.
– 2011. – P. 207–230.

17 Gibbons J. F., Johnson W.S., and Mylroie S.W. Projected Range Statistics: Semiconductors and Related Materials. – 2nd
Ed. – Stroudsburg, Penn: Dowden, Hutchinson and Ross, Inc. –1975.

18 Touryanski A.G., Vinogradov A.V., Pirshin I.V. X-ray reflectometer // Patent no. 6041098, US Cl. 378–70. Official Gazette March 21, 2000. – P. 2960.

19 Tur'yanskiy A., Gerasimenko N., Pirshin I., Senkov V. Mnogofunktsional'nyy rentgenovskiy reflektometr dlya issledovaniya
nanostruktur // Nanoindustriya. – 2009. – 5. – S.40-45.

20 Henke B.L., Gullikson E.M., and Davis J.C. X-ray interactions:
photoabsorption, scattering, transmission, and reflection at E=50-30000 eV, Z=1-92. //Atomic Data and Nuclear Data Tables. – 1993. – V. 54 – 2. – P. 181-342. (http://henke.lbl.gov/optical_constants/).

Загрузки

Как цитировать

Beisenkhanov, N. B., Beisembetov, I. K., Nussupov, K. K., Zharikov, S. K., Kenzhaliev, B. K., Akhmetov, T. K., & Seitov, B. Z. (2013). Ионный синтез и свойства пленок карбида кремния и углерода. Иондық синтез жəне көміртегі мен кремний карбиді пленкаларының қасиеттері. Вестник. Серия Физическая (ВКФ), 46(3), 27–36. извлечено от https://bph.kaznu.kz/index.php/zhuzhu/article/view/96

Выпуск

Раздел

Физика конденсированного состояния и проблемы материаловедения. Нанонаука