Plasma gasification of solid fuels

Authors

  • R.V. Baimuldin IETP, Al-Farabi Kazakh National University, Kazakhstan, Almaty
  • Z. Jankoski University of Split, University Department of Professional Studies, Department of Mechanical Engineering, Split, Croatia

DOI:

https://doi.org/10.26577/rcph-2019-1-1125
        112 41

Keywords:

plasma torch, plasma reactor, coal, gasification

Abstract

This article presents the results of thermodynamic analysis and experiments on plasma gasification of solid fuels from the example of Kuuchekinsky coal (KC). Thermodynamic calculations of plasma gasification showed that synthesis gas used in heat and power engineering, metallurgy and the chemical industry can be produced from solid fuels. Gasification (KC) allows to obtain synthesis gas with a maximum yield of 98.3% (CO - 43.5%, H2 - 54.8%).

To perform thermodynamic analysis, the TERRA software package is used, which is designed for numerical calculations of high-temperature processes and has an extensive database of its own thermodynamic properties of 3000 individual substances. The program allows you to determine the equilibrium composition of the thermodynamic system (coal + oxidizer), consisting of 20 chemical elements. The calculation is carried out automatically within the data bank created during the program. The thermodynamic data bank contains properties of more than 3000 individual substances formed by 65 elements in the temperature range 300-6000 K.

Experimental researches of plasma gasification of coal in various gasification agents were carried out at the facility, which is a cylindrical plasma reactor with systems of electricity, water, steam, gas and fuel supply.

References

1 V.E. Messerle, A.B. Ustimenko, Saarbruken, (Germany: Plazmatrium Academic Publishing, 2012), 404.

2 B.K. Aliyarov Mastering the burning of Ekibastuz coal in thermal power plants, (Almaty, 1996), 272. (in Russ)

3 Z.B. Sakipov, V.E. Messerle, and Sh.Sh. Ibraev, Electrothermochemical preparation of coal for burning. (Almaty, Science, 1993), 259. (in Russ)

4 G.Ya. Gerasimov, V.N. Makarov, Materials of the All-Union Conference, (Novosibirsk, 1988), 242 -246. (in Russ)

5 E. Pfender, Plasma Chemistry and Plasma Processing, 19, 1, 1-31 (1999).

6 J. Qiu, X. He, T. Sun, Z. Zhao, Y. Zhou, S. Guo, J. Zhang and T. Ma, Fuel Processing Technology, 85, 969 (2004).

7 M.F. Zhukov, B.A. Uryukov, V.S. Engelsht, at al. Theory of thermal electric arc plasma. (Novosibirsk: Science, 1987), 287 p. (in Russ)

8 E.I. Karpenko, V.E. Messerle Plasma energy technologies of fuel use. (Novosibirsk: Science, 1998), 385. (in Russ)

9 E. Karpenko, F. Lockwood, V. Messerle, and A. Ustimenko Proc. of the 6th Intern. Conf. on Technolоgies and Combustion for а Clean Environment "Clean Air", Portugal, III, 1465 -1468 (2001).

10 Z. Jankoski, F. Lockwood, V.E. Messerle, E.I. Karpenko, and A.B. Ustimenko, Thermophysics and aeromechanics, 11 (3), 473-486 (2004). (in Russ)

11 Z.B. Sakipov, V.E. Messerle, V.P. Ryabinin, and Sh.Sh. Ibraev, High Energy Chemistry, 20 (1), 61-67 (1986). (in Russ)

12 E.I. Karpenko, V.E. Messerle, and A.B. Ustimenko (Ulan-Ude: VSSTU, 1995), 33 p. (in Russ)

13 E.I. Karpenko, V.E. Messerle, Encyclopedia of low-temperature plasma, (Science, 2000), 4, 359-370. (in Russ)

14 M. Gorokhovski, E.I. Karpenko, F.C. Lockwood, V.E. Messerle, B.G. Trusov and A.B. Ustimenko, Journal of the Energy Institute, 78 (4), 157-171 (2005).

15 V.E. Messerle, A.B. Ustimenko and O.A. Lavrichshev, Fuel, 164, 172-179 (2016).

16 V.E. Messerle, A.B. Ustimenko, BP Statistical Review of World Energy 2017, June 2017. 66th Edition. BP p.l.c.; p. 50. (2017).

17 V.E. Messerle, A.B. Ustimenko Key World Energy Statistics 2017: International Energy Agency. OECD/IEA; p. 95. (2017).

18 V.E. Messerle, A.B. Ustimenko and O.A. Lavrichshev, Fuel, 203, 877–883 (2017).

19 V.E. Messerle, and A.B. Ustimenko, Fuel, 242, 447-454 ( 2019).

20 A.F. Bublievsky, J.C. Sagás, A.V. Gorbunov, H.S. Maciel, D.A. Bublievsky, G.P. Filho, P.T. Lacava, A.A. Halinouski and G.E. Testoni, IEEE Trans. Plasma Sci., 43 (5), 1742 – 1746 (2015).

21 A.V. Surov, S.D. Popov, V.E. Popov, D.I. Subbotin, E.O. Serba, V.A. Spodobin, G.V. Nakonechny and A.V. Pavlov, Fuel, 203, 1007-1014 (2017).

22 I.B. Matveev, N.V. Washcilenko, S.I. Serbin and N.A. Goncharova, IEEE Trans. Plasma Sci., 41 (12), 31953200 (2013).

23 V.E. Messerle, E.I. Karpenko and A.B. Ustimenko, Fuel, 126, 294-300 (2014).

24 V.E. Messerle, A.B. Ustimenko, Yu.E. Karpenko, M.Yu. Chernetskii, A.A. Dekterev and S.A. Filimonov, Thermal Engineering, 62 (6), 442–451 (2015).

25 E.I. Karpenko, V.E. Messerle, A.B. Ustimenko and O.A. Lavrichshev, Fuel Processing Technology. 107, 93–98 (2013).

Downloads

How to Cite

Baimuldin, R., & Jankoski, Z. (2019). Plasma gasification of solid fuels. Recent Contributions to Physics (Rec.Contr.Phys.), 68(1), 101–109. https://doi.org/10.26577/rcph-2019-1-1125

Issue

Section

Thermal Physics and Theoretical Thermal Engineering