Statistical theory of fullerite solubility

Authors

  • Zh.E. Ayaganov National Nanotechnology Laboratory of the open type, Al-Farabi Kazakh National University, Kazakhstan, Almaty
  • M.T. Gabdullin National Nanotechnology Laboratory of the open type, Kazakh-British Technical University,Kazakhstan, Almaty
  • D.V. Schur Institute of Problems of Materials Science after I.N. Frantsevich NAS of Ukraine, Ukraine, Kiev
  • D.V. Ismailov National Nanotechnology Laboratory of the open type, Al-Farabi Kazakh National University, Kazakhstan, Almaty
  • D.S. Kerimbekov National Nanotechnology Laboratory of the open type, Kazakhstan, Almaty
  • D.G. Batryshev Al-Farabi Kazakh National University, Kazakhstan, Almaty
  • D. Ciuparu Petroleum – Gas University of Ploiesti, Romania, Ploiesti

DOI:

https://doi.org/10.26577/RCPh-2019-i3-6
        204 58

Keywords:

materials, molecule, fullerite, Face Centered Cubic (FCC), Body-Centered Cubic (BCC), Simple Cubic (SP)

Abstract

In this paper, calculated the solubility of fullerite in order to clarify the features of the temperature dependence in the process. This takes into account the implementation in different temperature ranges of the crystalline structures of fullerite formed by fullerene molecules of various modifications. Experimental studies of solutions of fullerene molecules in various organic media made it possible to establish the features of the temperature dependence of the solubility of fullerite C60. Instead of the expected increase in solubility with increasing temperature, the extremes of its temperature dependence with a maximum at room temperature were revealed, the endothermicity of the dissolution process was established. The anomalies of the temperature dependence of the solubility of fullerenes C60 in organic matrices are due to a change in the structure of bonds in the framework of fullerene molecules, which, in turn, affect the structure of solid-phase fullerite. More accurate results using the formulas obtained can be calculated if the true values of the energy parameters are known from independent experiments. However, it can be assumed that the nature of the revealed patterns will remain.

References

1 R. Ruoff, R. Malhotra, D. Huestis, D. Tse and D. Lorents, Nature, 362, 140-141 (1993).

2 N. Sivaraman, R. Dhamodaran, I. Kaliappan, T. Srinivasan and P. Rao, Org. Chem, 57 (22), 6077-6079 (1992).

3 R. Ruoff, D.Tse, R. Malhotra and D. Lorents, Phys. Chem., 97 (13), 3379-3383 (1993).

4 Q. Ying, J. Marecek and B. Chu, Chem. Phys. Lett, 219 (3-4), 214-218 (1994).

5 T. Letcher, U. Domanska, A. Goldon and E. Mwenesongole, S.-Aft. Journ. Chem., 50, 51-53 (1997).

6 M. Beck and G. Mandi, Fullerenes Science Technol., 5, 291-310 (1997).

7 M. Beck, Pure s Appl. Chem., 70 (10), 1881-1887 (1998).

8 V. Bezmelnitsyn, A. Eletsky and M. Okun, UFN, 168 (11),1195-1220 (1998).

9 R. Doome, A. Fonseca and J. Nagu, Colloids and Surfaces A: Physicochemical and Engineering Aspects., 158 (1-2), 137-143 (1999).

10 Y. Markus, A. Smith, M. Korobov, A. Mirakyan, N. Avramenko and E. Stukalin, Journ. Phys. Chem. B., 105, 2499-2506 (2001).

11 K. Miyazawa, S. Shimomura, T. Wakahara and M. Tachibana, Diamond Relat. Mater., 65, 204–208 (2016).

12 H. Takeya, T. Konno, C. Hirata, T. Wakahara, K. Miyazawa, T. Yamaguchi, M. Tanaka and Y. Takano, J. Phys.:
Condens. Matter, 28, 354003-1–354003-8 (2016).

13 H. Takeya, T. Konno, C. Hirata, T. Wakahara, K. Miyazawa, T. Yamaguchi, M. Tanaka and Y. Takano, J. Phys.:
Condens. Matter, 28, 354003-1–354003-8 (2016).

14 L. Shrestha, R. Shrestha, J. Hill, T. Tsuruoka, Q. Ji, T. Nishimura and K. Ariga, Langmuir, 32, 12511-1251 (2016).

15 I. Stewart, M. Kim, and B. Wiley, Appl. Mater. Interfaces., 9, 1870-1876 (2017).

16 G. Cognard, G. Ozouf, C. Beauger, I. Jimenez-Morales, S. Cavaliere, D. Jones, J. Roziere, M. Chatenet and F. Maillard, Electrocatalysis, 8, 5158 (2017).

17 H. Wang, X. Yan and G. Piao, Electrochim. Acta, 231-264 (2017).

18 E. Akbari and Z. Buntat, Int. J. Energy Res., 41, 92-102 (2017).

19 T. Kizuka, K. Watanabe, D. Matsuura, T. Konno, S. Shimomura, T. Wakahara and K. Miyazawa, J. Nanosci.
Nanotechnol., 18(1), 451-454 (2018).

20 T. Wakahara, K. Miyazawa, O. Ito and N. Tanigaki, J. Nanomater., 2895850 (2016).

21 H. Takeya, T. Konno, C. Hirata, T. Wakahara, K. Miyazawa, T.Yamaguchi, M. Tanaka and Y. Takano, J. Phys.:
Condens. Matter, 28, 354003-8 (2016).

22 P. Bairi, K. Minami, J. Hill, W. Nakanishi, L. Shrestha, C. Liu, K. Harano, E. Nakamura and K. Ariga, ACS Nano, 10,
8796 (2016).

23 K. Kato, H. Murata, H. Gonnokami and M. Tachibana, Carbon, 107, 622 (2016).

24 D. Mahdaoui, M. Abderrabba, C. Hirata, T. Wakahara, and K. Miyazawa, J. Solution Chem, 45, P. 1158 (2016).

25 S. Meek, C. Pitman and A. Miller, J. Chem. Educ., 93, 275-286 (2016).

26 L. Zhang, L. Chen, J. Liu, X. Fang and Z. Zhang, Renew. Energy, 99, 888-897 (2016).

Downloads

How to Cite

Ayaganov, Z., Gabdullin, M., Schur, D., Ismailov, D., Kerimbekov, D., Batryshev, D., & Ciuparu, D. (2019). Statistical theory of fullerite solubility. Recent Contributions to Physics (Rec.Contr.Phys.), 70(3), 48–54. https://doi.org/10.26577/RCPh-2019-i3-6

Issue

Section

Condensed Matter Physics and Materials Science Problems. NanoScience

Most read articles by the same author(s)

1 2 > >>