Study of the elastic scattering of 15N ions on 9Be nuclei at Elab=18,75 MeV

Authors

  • N. Burtebayev Institute of Nuclear Physics of the Republic Kazakhstan, Almaty, Kazakhstan http://orcid.org/0000-0002-4715-9604
  • A.K. Morzabayev L.N. Gumilyov Eurasian National University, Nur-Sultan, Kazakhstan
  • N. Amangeldi Institute of Nuclear Physics of the Republic Kazakhstan, Almaty, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan http://orcid.org/0000-0002-9416-5425
  • B. Mauyey Institute of Nuclear Physics of the Republic Kazakhstan, Almaty, Kazakhstan; Joint Institute of Nuclear Research, Dubna, Russian Federation
  • G. Yergaliuly L.N. Gumilyov Eurasian National University, Nur-Sultan, Kazakhstan
  • D.K. Alimov Institute of Nuclear Physics ME RK, Almaty, Kazakhstan

DOI:

https://doi.org/10.26577/RCPh-2019-i4-1

Keywords:

light nuclei, elastic scattering, ΔE-E technique, optical potentials, convolution method., light nuclei, elastic scattering, ΔE-E technique, optical potentials, convolution method

Abstract

In present work, we measured the angular distributions of elastic scattering of 15N ions on 9Be nuclei at an energy of Elab = 18.75 MeV in the range of angles θ cm from 43 ° to 164 °. The extraction of 15N ion beams was carried out at the Nur-Sultan branch of the INP RK on the DC-60 cyclotron. The particles were detected in the framework of the ∆Е-Е technique using the silicon surface-barrier detectors dE and E from ORTEC, the thickness of which was 8 and 300 microns, respectively. 9Be films with a thickness of about 31 μg / cm2 were used as targets. The purpose of this work was to obtain new data on the parameters of the optical potential for the 15N + 9Be system.The obtained data were analyzed using the Fresco and DFPOT codes, within the framework of the optical model (OM) and the duble folding  method as a result of which several sets of optical parameters were obtained.

Author Biography

G. Yergaliuly, L.N. Gumilyov Eurasian National University, Nur-Sultan, Kazakhstan

Doctoral student of the 2nd year of study  ENU, Faculty of Physics and Technology, department "Nuclear Physics, New Materials and Technologies" 

References

1 N. Burtebayev, S.B.Sakuta, A.K.Morzabayev et al., Acta Phys. Polon. B 48, 495 (2017).

2 N. Burtebayev et al., Acta Phys. Polon. B Proceedings Supplement 11, 99-107, (2018).

3 G.R. Satchler, W.G. Love, Phys. Rep. 55, 183 (1979).

4 G.R. Satchler, Phys. Lett. B 83, 284 (1979).

5 C.W. Glover, R.I. Cutler, K.W. Kemper, Nucl. Phys. A 341, 137(1980).

6 F. Ajzenberg-Selove,Nucl.Phys.A 490, 1 (1988).

7 J.C. Zamora, V. Guimaraes, A. Barioni, et al., Phys. Rev., C 84, 034611(2011).

8 R.A.N. Oliveira, N.Carlin, et al., Nucl. Phys., A 856, 46–54(2011).

9 Z.H.Li, Y.J.Li, J.Su, B.Guo, et al., Phys. Rev., C87, 017601(2013).

10 A.Barbadoro, F.Pellegrini, et al., Physical Review, C41, 2425-2428 (1990).

11 L. Jarczyk, J. Okolowicz, et al., Nuclear Physics, A316 , 139-145 (1979).

12 R.Bock, H.H.Duhm, M.Grosse-schulte, R.Ruedel, Nuclear Physics, 70 , 481-496 (1965).

13 Yu.A. Glukhov et al., Physics of Atomic Nuclei. 73,14-23 (2010).

14 H.G. Bohlen, W. von Oertzen, R. Kalpakchieva, et al., Nuovo Cimento 111A , 841(1998).

15 H.G. Bohlen, R. Kalpakchieva, A. Blazevic, et al., Phys. Rev. C 64, 024312 (2001).

16 H.G. Bohlen, R. Kalpakchieva, W. von Oertzen, et al., Nucl. Phys. A 722,3 (2003).

17 A.T.Rudchik, et al., Nuclear Physics, A947 , 161 (2016).

18 N. Burtebayev et al., Mem.S.A.It. 88, 440-443 (2017).

19 I. J. Thompson, Comput. Phys. Rep. 7, 167 (1988).

20 J. Cook, Comput. Phys. Commun. 25, 125 (1982).

21 J. Cook, Comput. Phys. Commun. 35, 775 (1984).

22 H. De Vries, C.W. De Jager, C. De Vries, At. Data Nucl. Data Tables 36, 495 (1987).

Downloads

Published

2019-12-20

Issue

Section

Theoretical Physics. Nuclear and Elementary Particle Physics. Astrophysics