Poincare sections for two fixed centers problem and Henon-Heiles potential

Authors

DOI:

https://doi.org/10.26577/RCPh.2020.v72.i1.01
        94 102

Abstract

In this paper, we study the Henon-Heiles potential and the problem of two fixed centers. In studies of nonlinear systems for which  exact solutions are unknown, the Poincare section method is used. For the Henon-Heiles potential, Poincare sections were obtained. At low energies, the Henon-Heiles system looks integrable, since independently of the initial conditions, the trajectories obtained with the help of numerical integration lie on two-dimensional surfaces, i.e. as if there existed a second independent integral. Next, the potential of two fixed centers was investigated.  It was shown on the basis of the Poincare section that, in the case μ1 = μ2 = 1 the internal cross-sectional structure decomposes from the values H = –1.7, but the internal cross-sectional structure is preserved in the interval , in the case μ1 = 0.9 and μ1 = 0.1 the internal cross-sectional structure decomposes from the values  but the internal cross-sectional structure is preserved in the interval , in the case of μ1 = 0.7 and μ1 = 0.3 the internal cross-sectional structure decomposes from the values , but the internal cross-sectional structure is preserved in the interval .  With increasing energy, many of these surfaces decay. It is assumed that the numerical results obtained will serve as the basis for comparison with analytical solutions.

References

1 A. Lihtenberg and M. Liberman, Reguljarnaja i stohasticheskaja dinamika, (M:Mir, 1985), 59-71. (in Russ).

2 Euaggelos E. Zotos. Classifying orbits in the classical Henon-Heiles Hamiltoninan system, arXiv:1502.02510v1 [nlin.CD] 9 Feb 2015.

3 S.Ju. Vernov, TMF 135 (3), 409–419 (2003). (in Russ).

4 L. Euler Нistоrie de L’Academie Royale des sciences et Belles-lettres, 1767, ХVI, 228–247 (1760).

5 C G.J. Jacobi Vorlesungen uber Dynamik (Chelsea Publ., New York, 1969), 300 p.

6 M.A. Gonzalez Leon, J. Mateos Guilatre and M. de la Torre Mayado, Regular and Chaotic Dynamics 22(5), 520-542 (2017).

7 A.V. Borisov and I.S. Mamaev, Celestial Mechanics and Dynamical Astronomy 92, 371-380 (2005).

8 A.V. Borisov and I.S. Mamaev, Celestial Mechanics and Dynamical Astronomy 99, 253-260 (2007).

9 M. Seri, J. of Mathematical Physics 56, 012902 (2015).

10 T.G. Vozmicheva, Celestial Mechanics and Dynamical Astronomy 77, 37–48 (2000).

11 T.G. Vozmicheva and A.A. Oshemkov, Mat. Sb. 193(8), 3–38 (2002).

12 A. Albouy, Variational Methods and Their Applications, 11-21 (2003).

13 A. Albouy and T. Stuchi, J. Phys. A 37, 9109-9123 (2004).

14 H. Waalkens, R. Dullin H., and H. Richter P., Physica D 196, 265-310 (2004).

15 V.G. Demin, Astronomicheskii Zhurnal 37, 1068-1075 (1960).

16 D. O Mathuna, Integrable Systems in Celestial Mechanics, (Boston: Birkhauser, 2008), 234 p.

17 Ph. Arathoon, Regular and Chaotic Dynamics 24(4), 370-391 (2019).

18 A.V. Borisov, I.S. Mamaev and I.A. Bizyaev, Regul. Chaotic Dyn. 21(5), 556-580 (2016).

19 A.V. Borisov and I.S. Mamaev, Celestial Mech Dyn Astr 96, 1–17(2006).

20 L.C. Garcia-Naranjo, J.C. Marrero, E. Perez-Chavela and M. Rodriguez-Olmos, J. Differential Equations 260 (7), 6375–6404 (2016).

21 F. Tremblay, A.V. Turbiner and P. Winternitz, J. Phys. A:Math Theor. 43(1), 015202, 14 pp (2010).

22 V.V. Kozlov and A.O. Harin , Celest. Mech. Dyn. Astr. 54(4), 393-399 (1992).

23 Ch. T Omarov. and E. A. Malkov, Order and Chaos in Stellar and Planetary Systems ASP Conference Series ( St. Petersburg, 17-24 August, 2003) 316, 371-373.

24 Euaggelos E. Zotos, and A. Riano-Doncel, arXiv:1803.07398v1 [nlin.CD] 20 Mar 2018.

25 Euaggelos E.Zotos., arXiv:1709.04360v2 [nlin.CD] 14 Sep 2017.

26 I.A. Gerasimov., and S.V. Zhujko, Matem. modelirovanie i kraev. Zadachi 3, 74–81 (2005). (in Russ).

27 G.N. Duboshin Nebesnaja mehanika. Osnovy zadachi i metody, (Moscow: Nauka. Glav. Red. fiz.-mat. lit., 1968), 774-785. (in Russ).

Downloads

How to Cite

Malkov, E., Bekov, A., Momynov, S., Beckmuhamedov, I., Kurmangaliyev, D., Mukametzhan, A., & Orynqul, I. (2020). Poincare sections for two fixed centers problem and Henon-Heiles potential. Recent Contributions to Physics (Rec.Contr.Phys.), 72(1), 4–10. https://doi.org/10.26577/RCPh.2020.v72.i1.01

Issue

Section

Theoretical Physics. Nuclear and Elementary Particle Physics. Astrophysics