Recent advances in the development of methods for producing of porous titanium structures for medical applications

Authors

DOI:

https://doi.org/10.26577/10.26577/RCPh.2020.v75.i4.06
        108 77

Keywords:

porous titanium, porous metals, sintering, electrochemical etching, biomedicine

Abstract

Due to the unique structural, mechanical and chemical properties, porous titanium is one of the promising biomaterials of modern medicine. Such properties as biocompatibility, strong mechanical strength, inertness make titanium and its alloys the main material of modern implantology in the field of orthopedics, traumatology and dentistry. The advantage of porous titanium biomaterials over dense metals is its better interconnection with bone tissue and providing better stabilization, which reduces the risk of implant loss. The connected pores contribute to tissue ingrowth and thus the attachment of the prosthesis to the surrounding bone becomes stronger, preventing the weakening of the implant. This article is a review on modern methods for obtaining porous titanium structures, discussions of its physical properties and descriptions of usage in biomedical applications. The paper provides information on both general methods for the formation of porous metal structures and a description of the most common modern methods for producing porous titanium structures. In summary, an assessment of the state of the problem of the development of methods for obtaining and studying the properties of structures of porous titanium is given and some predictions for its development in the future.

References

1 X. Sun et al. Advanced Materials. 27(26), 3850-3867 (2015).

2 Ch. Bharti et al. Int. J. Pharm Investig. 5(3), 124-133 (2015).

3 Ch.M.Park et al. Journal of Hazardous Materials. 309, 133-150 (2016).

4 P. Bhanja et al. Fuel. 185, 432-441 (2016).

5 Y. Ma et al. Chinese Journal of Catalysis. 38 (12), 1956-1969 (2017).

6 H. Attar et al. Journal of Alloys and Compounds. 827, 154263 (2020).

7 K. Patka et al. Adv. Eng. Mat. 1700648, 1-18 (2018).

8 E. Michael et al. Pure and Applied Chemistry. 85(5), 1047-1078 (2013).

9 E.K. Molchanova Phase diagrams of titanium alloys. (Israel: Jerusalem, 1965), p. 65.

10 Yu. E. Sphera neftegas. 2, 1-2 (2011). (In Russ).

11 G.G. Krushenko Technologiya metallov. 10, 11-16 (2013). (In Russ).

12 N.S. Zefirov Sovetskaya enciklopediya. 4, 639 (1995). (In Russ).

13 C. Korner, R. Singer Adv Eng Mater. 2, 159–165 (2000).

14 J. Banhart Progr Mater Sci. 46, 559–632 (2001).

15 A. Salito et al. Schonende Beschichtung-stechnik. (Montre: Sulzer Technical Review, 1998). p. 45.

16 G. Rausch., J. Banhart Making cellular metals from metals otherthan aluminum. Handbook of cellular metals (Weinheim: Wiley-VCH Verlag, 2002), p. 21.

17 I.H. Oh et al. Scripta Mater. 49, 197–202 (2003).

18 G. Ryan et al. Biomaterials. 27, 2651-2670 (2006).

19 M. Bram Adv Eng Mater. 2, 196–199 (2000).

20 C.E Wen et al. Scripta Mater. 5, 1147–1153 (2001).

21 J.P. Li et al. Key Eng. Mater. 218, 51–54 (2002).

22 K. Kato et al. ActaBiomater. 9, 5802–5809 (2013).

23 M. Eisenmann Powder Metal Technologies and Applications. 7, 1031-1042 (1998).

24 J. Gubicza et al. Materials Science Forum. 589, 99–104 (2008).

25 L. Li. Et al. Biomaterials. 25, 2867–2875 (2004).

26 K. Tajima et al. Dental Materials Journal. 27, 258–265 (2008).

27 Y. Lu, et al. Applied surface science. 263, 297-301 (2012).

28 A. Tanner Clinical Infectious Diseases. 25(2), 213–217 (1997).

29 L. M. R. de Vasconcellos et al. Implantol. Braz. Oral. Res. 24, 399 (2010).

30 S. J. Hollister Adv. Mater. 21, 3330 (2009).

31 G. He et al. Behav. Biomed. Mater. 5, 16–31 (2012).

32 L. Gibson, M. F. Ashby Cellular solids: structure and properties. (Cambridge, UK: Cambridge University Press, 1999), p. 77-97.

33 Z. Wally et al. Mater. Met. 5, 1902 (2015).

34 N. Wenjuan et al. Materials Science and Engineering A. 506, 148–151 (2009).

35 B. Świeczko-Żurek Advances in Materials Science. 9 (2), 52-60 (2009).

36 Y.P. Scripta et al. Materialia. 57, 1020–1023 (2007).

37 A. Nouri et al. Biomimetic porous titanium scaffolds for orthopedic and dental applications (Shanghai: China, 2010) p. 534.

38 D.B. Burr, R.B. Martin American Journal of Anatomy. 186, 186-216 (1989).

39 J. Currey Cortical bone (London: Chapman and Hall, 1998), p. 35.

40 T.M. Keaveny Cancellous bone (London: Chapman and Hall, 1998), p. 56.

41 G.A. Silva et al. J. of Tissue Engineering and Regenerative Medicine. 1, 97-109 (2007).

42 M. Niinomi et al. Biomaterials in Orthopedics. 22, 41-62 (2004).

43 Z. Lekston, T. Goryczka Applied Surface Science. 130, 47-150 (2007).

44 T. Imwinkelried Journal of Biomedical Materials Research. 81A, 964–970 (2007).

45 A. Nouri et al. Biomimetics, Learning from Nature. 534 (2010).

46 A. Laptev et al. Powder Metallurgy. 47, 85-92 (2004).

47 Z. Wang et al. J. Alloys Compd. 717, 271-285 (2017).

48 J. Lausma et al. Applied Surface Science. 44. –P.133-146 (1990).

49 P. G. Coelho et al. Dent. Mater. 31, 37 (2015).

50 M. Mour et al. Materials. 3(5), 2947–2974 (2010).

51 S. Bencharit et al. Clin. Implant Dent. Relat. Res. 16, 817 (2014).

Downloads

How to Cite

Mussabek, G., Kalimoldayev, M., Lysenko, V., Dikhanbayev, K., Baiganatova, S., & Amirkhanova, G. (2020). Recent advances in the development of methods for producing of porous titanium structures for medical applications. Recent Contributions to Physics (Rec.Contr.Phys.), 75(4), 46–60. https://doi.org/10.26577/10.26577/RCPh.2020.v75.i4.06

Issue

Section

Condensed Matter Physics and Materials Science Problems. NanoScience

Most read articles by the same author(s)