Synthesis of NiAI intermetallic compound as a metal support for solid oxide fuel cells

Authors

  • S. Opakhai L.N. Gumilyov Eurasian National University, Kazakhstan, Nur-Sultan
  • K.A. Kuterbekov L.N. Gumilyov Eurasian National University, Kazakhstan, Nur-Sultan
  • S.A. Nurkenov L.N. Gumilyov Eurasian National University, Kazakhstan, Nur-Sultan

DOI:

https://doi.org/10.26577/RCPh.2020.v74.i3.07
        62 47

Keywords:

solid oxide fuel cells (SOFC), metal substrate, intermetallic compounds, thermal explosion, adiabatic temperature

Abstract

One of the promising areas of application of porous metals are solid oxide fuel cells on a metal base. Structures with a metal base are of great interest due to the possibility of quick start, greater reliability, mechanical stability, resistance to thermal cycling in comparison with solid oxide fuel cells in which ceramic electrodes or electrolyte are used as the supporting base. In addition, the cost of fuel cells can be reduced by moving to a design in which a porous metal plate performs the supporting function, and the electrolyte and electrodes are deposited in the form of thin films. In most cases, stainless steel is used for the manufacture of supporting metal substrates for SOFCs because they have a coefficient of thermal expansion (CTE) close to that of other components of the fuel cell and high oxidation resistance. However, at high temperatures, a reaction occurs between Fe, Cr from the metal base and Ni from the anode, which leads to a decrease in the catalytic activity of the latter. To solve this problem, the interaction of Cp with Ni is the manufacture of metal bases based on Ni, Ni-Al intermetallic compounds. In this review, we discuss in detail the work of world scientists on the synthesis of Ni-Al intermetallic compounds, especially methods, synthesis thermodynamics, characteristics, process parameters, and reaction features.

References

1 M.C. Tucker, J. Power Sources, 195, 4570-4582 (2010).

2 N. Mahato, A. Banerjee, et al, Progress in Materials Science, 72, 141-337 (2015).

3 T. Franco, M. Brandner, et al, ECS Trans, 25, 681-688 (2009).

4 L. Rose, O. Kesler, et al, Int J Green Energy, 6, 638-645 (2009).

5 J.A. Horton, C.T. Liu, and E.P. George Materials Science and Engineering: A., 192-193, 873-880 (1995).

6 H.Z. Cui, L.L. Cao and J. Wu, J. Porous Mater, 19, 415-422 (2012).

7 Deluque Toro C.E., Ramos de Debiaggi S. and Monti A.M. Physica B: Condensed Matter, 407(16), 3236-3239 (2012).

8 H.X. Dong, Y.H. He, et al, Microstructure Process, 528, 13-14 (2011).

9 Alizadeh Mostafa, Mohammadi Ghaffar. Mater. Lett., 67, 148-154 (2012).

10 Hammel E.C, Ihhodaro L.R and Okoli O.I. Ceramics International, 40, 15351-15370 (2014).

11 A.B. Medvedev, R.F. Trunin UFN, 182, 829-846 (2012). (in Russ)

12 Y.H. He, Y. Jiang, et al, Advanced Materials, 19(16), 2102-2106 (2007).

13 Y. Jiang, Y.H. He, et al, Intermetallics, 16(2), 327-332 (2008).

14 H. Nakajima, Fabrication, properties, and applications of porous metals with directional pores, Proc.. of the Japan Academy, Series B. ‒ 2010. ‒ Vol.86(9). ‒ P.884-899 (2010).

15 H.X. Dong, Y. Jiang, et al, Materials Chemistry and Physics, 122(2-3), 417-423 (2010).

16 Y. Han, J. Alloy. Comp., 741, 765-774 (2018).

17 M.B. Rahaei, D. Jia, Eng. Fract. Mech., 132, 136-146 (2014).

18 L.M. Pike, Y.A. Chang, and C.T. Liu, Intermetallics, 5(8), 601-608 (1997).

19 K. Matsuura, K. Ohsasa, et al, Met. Mater. Trans A., 30(6), 1605-1612 (1999).

20 J. Subrahmanyam, M. Vijayakumar, J. Mater. Sci., 27, 6249-6273 (1992).

21 J.C. Saraiva, D.B. Santos Materials Science Forum, 426-432, P.1619–1624 (2003).

22 W.L. Ren, J.T. Guo, et al, Materials Letters, 58(7-8), 1272-1276 (2004).

23 Yu.S. Nayborodenko, V.I. Itin, and K.V. Savitsky, Izv.vuzov. Physics, 10, 27-35 (1968). (in Russ)

24 A.G. Merzhanov, I.P. Borovinekaya, Dokl. AN SSSR, 204, 2, 366-369 (1972). (in Russ)

25 A.G. Merzhanov Physical chemistry. Contemporary issues, (Moscow, Chemistry, 1983), pp.6-45. (in Russ)

26 A.P. Amosov, I.P. Borovinskaya, and A.G. Merzhanov Poroshkovaya tekhnologiya samorasprostranyayushchegosya vysokotemperaturnogo sinteza materialov: Ucheb. posobiye, (Moscow, Mechanical Engineering, 1, 2007). (in Russ)

27 G.V. Samsonov, I.M.Vinitsky, Tugoplavkiye soyedineniya (Moscow, Metallurgy, 1976), 560p. (in Russ)

28 D.A. Frank-Kamsnetskiy, Diffuziya i teploperedacha v khimicheskoy kinetike, (Moscow, Science, 1967), 491p. (in Russ)

29 V.I. Itin, Yu.S. Nayborodenko, Vysokotemperaturnyy sintez intermetallicheskikh soyedineniy, (Tomsk, Izd-vo Tom. un-ta, 1989), 214p. (in Russ)

30 V.V. Barzykin, of Pure Appl.Chem., 64(7), 909-918 (1992).

31 K. Morsi, Materials Science and Engineering, A299, 1-15 (2001).

32 M. Suarez, A. Fernandez, et al, Sintering Applications, 320-342 (2013).

33 O.O. Ayodele, M.A. Awotunde, et al, Materials Today: Proceedings, 1-4 (2020).

34 O. Kubaschewski, C.B. Alcock, and P.J. Spencer Materials thermochemistry 6th ed., (Oxford: Pergamon, 1993).

35 A. Biswas, S.K. Roy, et al, Acta Materialia, 50(4), 757-773 (2002).

36 C.L. Yeh, W.Y. Sung, Journal of Alloys and Compounds, 384(1-2), 181-191 (2004).

37 C. Suryanarayana, Prog.Mater.Sci., 46, 1-184 (2001).

38 L. Takacs, Prog. Mater. Sci, 47, 355-414 (2002).

39 E.T. Kubaski, O.M. Cintho and J.D. Capocchi Powder Technology, 214(1), 77-82 (2011).

40 M.H. Enayati, F. Karimzadeh, and S.Z. Anvari, J. Mater. Process. Technol, 200, 312-315 (2008).

41 Y. Wang, Z. Wang, et al, Intermetallics, 16, 682-688 (2008).

42 X. Fan, L. Zhu and W. Huang, Journal of Alloys and Compounds, 729, 617-626 (2017).

43 A. Varma, J.P. Lebrat, Chemical Engineering Science, 47(9-11), 2179-2194 (1992).

44 S. Gennari, F. Maglia, Journal of Alloys and Compounds, 413(1-2), 232-238 (2006).

45 K.C. Patil, S.T. Aruna and T. Mimani. Combustion Synthesis: An Update Current Opinion in Solid State and Materials Science, 6, 507-512 (2002).

46 K.S. Martirosyan, Advances in Science and Technology, 63, 236-245 (2010).

47 J.W. McCauley, J.A. Puszynski. Int.J. of Self-Propagating High-Temperature Synthesis, 17(1), 58-75 (2008).

48 I.E. Gunduz, K. Fadenberger, et al, Applied Physics Letters, 93(13), 134-141 (2008).

49 R. Nikbakht, H. Assadi, Acta Materialia, 60(10), 4041-4053 (2012).

50 S.Y. Zhu, Q.L. Bi, et al, Wear, 274–275, 423-434 (2012).

51 V.V. Kurbatkina, E.I. Patsera, et al, Ceramics International, 44(4), 4320-4329 (2018).

52 S. Singrathai, V. Rachpech and S. Niyomwas, Energy Procedia, 9, 398-403 (2011).

53 Y.L. Zhang, J. Li, Y.Y. Zhang and D.N. Kang, Journal of Alloys and Compounds, 827, 154131 (2020).

54 Y.J. Yu, J.S. Zhou, et al, Wear, 274-275, 298-305 (2012).

55 Yu Y., Zhou J., Tribology International, 104, 321-327 (2016).

56 P. Zhu, J.C. Li and C.T. Liu. Materials Science and Engineering, A329-331, 57-68 (2002).

Downloads

Published

2020-09-12

Issue

Section

Condensed Matter Physics and Materials Science Problems. NanoScience

Most read articles by the same author(s)