CRITICAL STATISTICS OF ENERGY LEVEL IN DISORDERED SYSTEMS: III. SYMPLECTIC SYMMETRY CLASS
Keywords:
a localization transition,Abstract
A critical distribution function of electron energy levels is considered at a localization transition,caused by disorder of the impurity potential in the presence of symplectic symmetry. A quasi-Poisson asymptotic at larger energies is established, which is turned out to be a scale-invariant quantity.References
1. Ando T. Numerical study of symmetry effects on localization in two dimensions // Phys. Rev. B. – 1989. – V.40. – P. 5325-5339.
2. Efetov K.B. Supersymmetry and theory of disordered metals // Adv. Phys. 1983. – Vol.32, N1 – P. 53-127.
3. Писсанецки С. Технология разреженных матриц: / пер. c англ. - М.:. Мир, 1988. - 410 с.
4. Zharekeshev I.Kh, Kramer B., Advanced Lanczos diagonalization for models of quantum disordered systems. Comp. Phys. Comm. 1999, - V. 121. - P. 502 506.
5. Katomeris G.N., Evangelou S.N. Critical chaos in 2D disordered systems with spin-orbit coupling // Europhys. Jour. B. – 2000. – Vol.16. – P. 133-136.
6. Evangelou S. N. Anderson transition, scaling, and level statistics in the presence of spin orbit coupling // Phys. Rev. Lett. – 1995. – Vol.75. – P. 2550-2553.
7. Aronov A.G., Kravtsov V.E., Lerner I.V. Level spacing distribution near the Anderson transition // Pis'ma Zh. Eksp. Teor. Fiz. – 1994. – Vol.59. – N1. – P. 40-45.
8. Schweitzer L., Zharekeshev I.Kh. Scaling of level statistics and critical exponent of disordered two-dimensional symplectic systems // J. Phys.: Condens. Matter. – 1997. – Vol.9. – P. L441-L446.
9. Kuemmeth F., Bolotin K.I., Shi S.-F., Ralph D.C. Measurement of discrete energy-level spectra in individual chemically-synthesized gold nanoparticles // Nano Lett. – 2008. – Vol.8, N12. – P. 4506–4512.
2. Efetov K.B. Supersymmetry and theory of disordered metals // Adv. Phys. 1983. – Vol.32, N1 – P. 53-127.
3. Писсанецки С. Технология разреженных матриц: / пер. c англ. - М.:. Мир, 1988. - 410 с.
4. Zharekeshev I.Kh, Kramer B., Advanced Lanczos diagonalization for models of quantum disordered systems. Comp. Phys. Comm. 1999, - V. 121. - P. 502 506.
5. Katomeris G.N., Evangelou S.N. Critical chaos in 2D disordered systems with spin-orbit coupling // Europhys. Jour. B. – 2000. – Vol.16. – P. 133-136.
6. Evangelou S. N. Anderson transition, scaling, and level statistics in the presence of spin orbit coupling // Phys. Rev. Lett. – 1995. – Vol.75. – P. 2550-2553.
7. Aronov A.G., Kravtsov V.E., Lerner I.V. Level spacing distribution near the Anderson transition // Pis'ma Zh. Eksp. Teor. Fiz. – 1994. – Vol.59. – N1. – P. 40-45.
8. Schweitzer L., Zharekeshev I.Kh. Scaling of level statistics and critical exponent of disordered two-dimensional symplectic systems // J. Phys.: Condens. Matter. – 1997. – Vol.9. – P. L441-L446.
9. Kuemmeth F., Bolotin K.I., Shi S.-F., Ralph D.C. Measurement of discrete energy-level spectra in individual chemically-synthesized gold nanoparticles // Nano Lett. – 2008. – Vol.8, N12. – P. 4506–4512.
Downloads
How to Cite
Zharekeshev, I. K. (2018). CRITICAL STATISTICS OF ENERGY LEVEL IN DISORDERED SYSTEMS: III. SYMPLECTIC SYMMETRY CLASS. Recent Contributions to Physics (Rec.Contr.Phys.), 37(2), 50–55. Retrieved from https://bph.kaznu.kz/index.php/zhuzhu/article/view/136
Issue
Section
Condensed Matter Physics and Materials Science Problems. NanoScience