Scroll compressor. Analysis of calculation methods

Authors

DOI:

https://doi.org/10.26577/RCPh.2021.v78.i3.04
        81 53

Keywords:

Scroll compressor, calculation method, mathematical modeling, mass flow rate of the working substance, regrinding of the compressed medium

Abstract

The paper deals with some aspects of mathematical modeling of a scroll compressor. Various approaches to modeling the working processes of machines of the volumetric compression principle, their applied value and priority of use are presented. An analytical review of the methods for calculating the leakage of a compressed medium, applied to a scroll compressor, taking into account the classification of slots, is carried out. Conclusions are made about the need to clarify the assumptions and improve this technique by taking into account the fact of the mobility of the walls of the gap, depending on the share of the influence of various factors on the leakage of the compressed medium. And also about the influence of this fact on the accuracy of calculations and the optimal choice of the operating mode of the compressor. Examples are given in which taking this condition into account in the transformed systems of equations will improve the accuracy in applied calculations of the working processes of spiral machines, when designing new samples.

References

1 A. P. Troup and N. T. M. Dennis, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film 9, 2048–2052 (1991).

2 P. A. Lessard, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film 18, 1777–1781 (2000).

3 X.-J. Yue, Y. Lu, Y.-L. Zhang, D. Ba, G.-Y. Wang, and Z. Zhang, Vacuum 116, 144–152 (2015).

4 T. Sawada, S. Kamada, W. Sugiyama, J. Takemoto, S. Haga, and M. Tsuchiya, Vacuum 53, 233–237 (1999).

5 X. Yue, Y. Zhang, Z. Su, D. Ba, G. Wang, and Z. Zhang, Vacuum 139, 127–135 (2017).

6 F. Jianmei, Z. Qingqing, H. Tianfang, and P. Xueyuan, Int. J. Hydrogen Energy 46, 5699–5713 (2021).

7 S. Zheng, M. Wei, P. Song, C. Hu, and R. Tian, Appl. Therm. Eng. 175, 115368 (2020).

8 S. Zheng, M. Wei, C. Hu, P. Song, and R. Tian, Sci. China Technol. Sci. 64, 971–983 (2021).

9 Y. F. Zhang, Z. H. Ji, J. Y. Liu, S. S. Xiong, X. B. Huang, B. T. Mao, B. S. Guo, Z. C. Ying, and Y. B. Sun, Appl. Mech. Mater. 741, 572–576 (2015).

10 Z. Sun, B. Wang, X. Zheng, T. Kawakubo, H. Tamaki, and R. Numakura, Chinese J. Aeronaut. 33, 2099–2109 (2020).

11 Y. Deng, N. Miao, D. Wu, Y. Liu, X. Zhai, and J. Tong, Int. J. Hydrogen Energy 44, 24856–24866 (2019).

12 C. Ma, Z. Yang, K. Jiao, Z. Liu, and Q. Du, Int. J. Green Energy, 1–13 (2021).

13 M. H. Hablanian, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 6, 1177–1182 (1988).

14 Y. Lu, A. Kovacevic, M. Read, and N. Basha, Designs 3, 52 (2019).

15 N. Basha, A. Kovacevic, and S. Rane, Appl. Therm. Eng. 193, 116959 (2021).

16 A. Kovacevic and S. Rane, J. Phys. Conf. Ser. 1909, 012063 (2021).

17 X. Ma, C. Zhang, and K. Li, Appl. Therm. Eng. 161, 114139 (2019).

18 Z. Li, L. Li, Y. Zhao, G. Bu, P. Shu, and J. Liu, Vacuum 85, 95–100 (2010).

19 T. Sriveerakul, S. Aphornratana, and K. Chunnanond, Int. J. Therm. Sci. 46, 812–822 (2007).

20 E. Djajadiwinata, S. Sadek, S. Alaqel, J. Orfi, and H. Al-Ansary, Appl. Sci. 11, 3245 (2021).

21 C. Metin, O. Gök, A. U. Atmaca, and A. Erek, Energy 166, 1216–1228 (2019).

22 M. Ali Faghih Aliabadi, G. Zhang, S. Dykas, and H. Li, Appl. Therm. Eng. 186, 116541 (2021).

23 M. A. F. Aliabadi, E. Lakzian, A. Jahangiri, and I. Khazaei, Appl. Therm. Eng. 164, 114478 (2020).

24 Q. Zhang, J. Feng, J. Wen, and X. Peng, Int. J. Hydrogen Energy 43, 19231–19241 (2018).

25 S. Fox, R. Collins, and J. Boxall, J. Hydraul. Eng. 143, 04016080 (2017).

26 N. Stosic, Screw Compressors (Springer-Verlag, Berlin/Heidelberg, 2005).

27 A. Kovacevic, N. Stosic, and I. Smith, Screw Compressors (Springer Berlin Heidelberg, Berlin, Heidelberg, 2007).

28 Z. Li, L. Li, Y. Zhao, G. Bu, and P. Shu, Vacuum 84, 415–421 (2009).

29 Y. Su, T. Sawada, J. Takemoto, and S. Haga, Vacuum 47, 815–818 (1996).

30 A. V. Tyurin, A. V. Burmistrov, S. I. Salikeev, A. A. Raykov, and M. G. Fomina, Vak. Forsch. und Prax. 32, 42–44 (2020).

31 A. Raykov, A. Burmistrov, S. Salikeev, and M. Fomina, Vak. Forsch. und Prax. 30, 24–27 (2018).

32 A. Burmistrov, S. Salikeev, A. Raykov, and M. Fomina, Vak. Forsch. und Prax. 29, 28–31 (2017).
33 T. Li, J. Wang, S. Lei, W. Zhang, and Z. Ren, J. Vibroengineering 22, 1534–1546 (2020).

34 F. Cao, T. Gao, S. Li, Z. Xing, and P. Shu, Exp. Therm. Fluid Sci. 35, 219–225 (2011).

35 A. Minikaev, D. Yerezhep, D. Zhignovskaia, V. Pronin, and A. Kovanov, IOP Conf. Ser. Mater. Sci. Eng. 826, 012022 (2020).

36 V. A. Pronin, Y. L. Kuznetsov, D. V. Zhignovskaia, A. F. Minikaev, and D. Yerezhep, AIP Conf. Proc. 2141, (2019).

37 C. Yan, J. Liu, S. Zheng, B. Huang, and J. Dai, Symmetry (Basel). 12, 2003 (2020).

Downloads

Published

2021-09-06

Issue

Section

Condensed Matter Physics and Materials Science Problems. NanoScience