Determination of the properties of paramagnetic centers of silicon nitride, under various conditions of heat treatment

Authors

DOI:

https://doi.org/10.26577/RCPh.2022.v80.i1.04

Keywords:

PECVD method, silicon nitride, heat treatment, paramagnetic centers, dangling bonds

Abstract

Investigation of the process of formation of paramagnetic light-emitting particles based on the material. Silicon nitride is widely used as an insulating and passivating layer due to its dielectric properties and due to its high interface barrier. The PECVD method was used to obtain SiNx / SiO2 / Si samples, in which paramagnetic centers were found. A feature of this method is deposition at low temperatures (250-300 °C), which leads to the formation of bonds with hydrogen. Upon further annealing, hydrogen evaporates and dangling particles are formed. An interesting fact is the detection of a signal in weak fields. Long-term furnace annealing in Ar at 800 °C does not change the signal parameters between the third and fourth manganese components; however, the signal in weak fields decreases. Heat treatment at 1100 °C in an Ar medium converts the signal between the third and fourth manganese components and restores the signal in weak fields. The nature of the data corresponds to the signals of the superposition of K and N emitting centers. Depending on the sample annealing temperature, the signal in weak fields is insignificant.

References

1 I. Parkhomenko, L. Vlasukova, F. Komarov and et al., Thin Solid Films 626, 70-75 (2017).

2 V.A. Gritsenko, E.E. Meerson, I.V. Travkov and Yu.V. Goltvjanskii, Microelectronics (Sov) 16, 42-50 (1987).

3 I. Fujiwara, H. Aozasa, A. Nakamura, Y. Komatsu, Y. Hayashi, Proc. IEDM, 995-998 (1998).

4 D. Murzalinov, A. Akilbekov, A. Dauletbekova, L. Vlasukova, M. Makhavikov and M. Zdorovets, Materials research express 3, 1-7 (2018).

5 V.Ya. Bratus, S.M. Okulov, E.B. Kaganovich, I.M. Kizyak, E.G. Manoilov, Physics and technology of semiconductors 5, 621-625 (2004).

6 V. Zakorzhevsky, Concise Encyclopedia of Self-Propagating High-Temperature Synthesis, 339-341 (2017).

7 K. Ma, J. Y. Feng and Z. J. Zhang, Nanotechnology 14, 4650-4653 (2006).

8 Y.Q. Wang, G.L. Kong, W.D. Chen, H.W. Diao, C.Y. Chen, S.B. Zhang and X. B. Liao, Appl. Phys. Lett. 81, 4174-4176 (2002).

9 C. Liu, C. Li, A. Ji, L. Ma, Y. Wang and Z. Cao, Nanotechnology 16, 940-943 (2005).

10 T. Y. Kim, N. M. Park, K. H. Kim, G. Y. Sung, Y. W. Ok, T. Y. Seong and C. J. Choi, Appl. Phys. Lett. 85, 5355-5357 (2004).

11 P. Singh, S. Ghosh, G.V. Prakash, S.A. Khan, D. Kanjilal, A.K. Srivastava, H. Srivastava and P. Srivastava, Nucl. Instr. Meth. 276, 51-55 (2012).

12 D. Savchenko, A. Poppl and A.H. Kassiba, Frontiers in Magnetic Resonance, 225-242 (2018).

13 V.K. Cherkasov, Yu.A. Kurskiy, K.A. Kozhanov, M.P. Bubnov and V.A. Kuropatov, Electronic tutorial, 53, (2010).

14 H. Li, F. Sun, T. Dong and X. Xu, IOP Conference Series Materials Science and Engineering 678, 1-6 (2019).

15 M.C. Caillahua, F. Moura and G. Solorzano, Journal of Nanotechnology 3, 1-2 (2019).

16 J. Robertson, Journal of Non-Crystalline Solids 187, 297, (1995).

17 S.V. Desphande, F. Gulari, S.W. Brown and S.C. Rand, J. Appl. Phys. 77, 6534-6541 (1995).

18 W.L. Warren, J. Robertson and J. Kanicki, Appl. Phys. Lett. 63, 2685-2687 (1993).

19 N.A. Dobychin, M.N. Ivin, A.N. Kachemtsev and V.V. Karzanov, Collection of reports. Application of laser technologies for solving problems in physics of high energy densities. XX Kharitonov readings 2, 174-176, (2018).

20 M.N. Brekhovskikh, S.P. Solodovnikov, L.M. Moiseeva, I.A. Zhidkova, G.L. Denisov, V.A. Fedorov, Inorganic materials 7, 756-759 (2019).

21 Q. Xu, Y.X. Li, X.N. Li, J.B. Wang, F. Yang, Y. Yang and T.L. Ren, Modern physics letters B 6, 1-16 (2017).

22 H.B. Huang, Z.H. Yue, Y.P. He, J.R. Yuan, X.X. Zeng, N.G. Zhou and L. Zhou, Journal of wuhan university of technology-materials science edition 3, 585-588 (2018).

23 N. El Arbi, R. Jemai, K. Khirouni and H. Khemakhem, Silicon 4, 2075-2086 (2019).

24 K. Jumaa, S.A. Hadi, A. Nayfeh, IEEE, 1909-1912, (2019).

25 E.S. Demidov, N.A. Dobychin, V.V. Karzanov, M.O. Marychev and V.V. Sdobnyakov, Semiconductor physics and technology 7, 961-965 (2009).

26 I.P. Vorona, S.S. Ishchenko, S.M. Okulov and V.V. Nosenko, Semiconductor physics quantum electronics & optoelectronics 1, 60-65 (2020).

Downloads

Published

2022-03-02

Issue

Section

Condensed Matter Physics and Materials Science Problems. NanoScience