Effect of microplasma spraying parameters on the loss of sprayed Zr wire and coating porosity
DOI:
https://doi.org/10.26577/RCPh.2021.v79.i4.10Keywords:
microplasma spraying (MPS), zirconium coatings, material utilization coefficient (MUC), porosity, metallization figure, implantsAbstract
The article presents new results of studying the causes of material loss during microplasma spraying (MPS) and substantiates the choice of optimal parameters for efficient spraying of zirconium wire coatings on steel substrates and obtaining coatings with the desired porosity up to 20.3% on a titanium alloy. Optimum spraying parameters provide the maximum material utilization coefficient (MUC) - up to 95%, and the minimum material losses when spraying coatings on small parts: 47% when spraying onto a substrate with an average cross-sectional area of 2 mm and less than 1% when spraying onto a substrate with an average diameter of 8 mm. The studies were carried out using a multifactorial experiment with fractional replicas 24-1 with varying such spraying parameters as current strength, spraying distance, plasma-forming gas flow rate, and wire flow rate. To study the distribution of the coating material in the spray spot, macro photography of the metallization figures was carried out and analyzed with the construction of approximating curves. Scanning electron microscopy was used to determine the pore size and porosity of zirconium coatings at different parameters of microplasma spraying on a titanium alloy. Using the methods of regression analysis of the experimental results, equations were obtained that make it possible to assess the degree of influence of the parameters of microplasma spraying on the value of the MUC and the porosity of the coatings, and it was found that the greatest influence is exerted by the current strength and the plasma-forming gas flow rate. The choice of the optimal MPS parameters of a zirconium coating with a porosity suitable for medical implant coatings has been substantiated.
References
2 B. H. Robert, Journal of Thermal Spray Technology, 25, 827-850 (2016).
3 V.I. Kalita, A.I. Mamaev, V.A. Mamaeva, D.A. Melanin, D.I. Komlev, A.G. Gnedovets, V.V. Novochadov, V.S. Komlev and A.A. Radyuk, Inorg Mater Appl Res, 7(3), 376-387 (2016).
4 B. Fotovvati, N. Namdari and A. Dehghanghadikolaei, J Manuf Mater Process, 3(1), 1-22 (2019).
5 J.W. Nicholson, Prosthesis, 2, 100-116 (2020).
6 W. Liu, S. Liu and L. Wang, Coatings, 9, 249 (2019).
7 D. Apostu, O. Lucaciu, G.D.O. Lucaciu, B. Crisan, L. Crisan, M. Baciut, F. Onisor, G. Baciut, R.S. Câmpian and S. Bran, Drug Metab. Rev., 49, 92-104 (2017).
8 N. Eliaz, Materials, 12 (3), 407 (2019).
9 N.J. Hallab and Jacobs J.J., Orthopedic Applications. [In] Biomaterials Science, B.D. Ratner, A.S. Hoffman, F.J. Schoen [ed.] (Academic Press, San Diego, 2013), 841-882 p.
10 L. Kunčická, R. Kocich R. and T.C. Lowe, Prog Mater Sci, 88, 232-280 (2017).
11 M.V. Tumilovich, V.V. Savich and A.I. Shelukhina, Doklady BGUIR 7(101), 115-119 (2016).
12 F. Matassi, A. Botti, L. Sirleo, C. Carulli and M. Innocenti, Clin. Cases Miner. Bone Metab., 10(2), 111-115 (2013).
13 A. Civantos, C. Dominguez, R.J. Pino, G. Setti, J.J. Pavon, E. Martinez-Campos, F.J.G. Garcia, J.A. Rodriguez, J.P. Allain and Y. Torres, Surf Coat Technol, 368, 162-174 (2019).
14 D. Alontseva, E. Ghassemieh, S. Voinarovych, O. Kyslytsia, Polovetski, N. Prokhorenkova and A.T. Kadyroldina, Johnson Matthey Technol Rev, 64(2), 180-191 (2020).
15 S. Voinarovych, O. Kyslytsia, Ie.K. Kuzmych-Ianchuk, O. Masiuchok, S. Kaliuzhnyi, D. Teodossiev, V. Petkov, R. Valov, Al. Alexiev and V. Dyakova, Series on Biomechanics, 31 (4), 27-33 (2017).
16 D.L. Alontseva, A.R. Khozhanov, S. Voinarovich, O. Kyslytsia, N.V. Prokhorenkova, A.B. Sadibekov, S. Kalyuzhny and A.L. Krasavin, 7th International Congress on Energy Fluxes and Radiation Effects (Tomsk, 14-26 September, 2020), 817 – 821 p.
17 ASTM F136-13(2013) Standard Specification for Wrought Titanium-6Aluminum-4Vanadium ELI (Extra Low Interstitial) Alloy for Surgical Implant Applications (UNS R56401), ASTM International, West Conshohocken, PA, 2013.
18 R.C. Tucker, ASM Handbook, Volume 5A: Thermal Spray Technology, (ASM International, 2013).
19 D.L. Alontseva, M.B. Abilev, A.M. Zhilkashinova, S.G. Voinarovych, O. Kyslytsia, E. Ghassemieh, A. Russakova and L. Łatka, Adv. in Mater. Science, 18(3) (57), 79-94 (2018).
20 ASTM E2109-01(2014) Standard Test Methods for Determining Area Percentage Porosity in Thermal Sprayed Coatings, ASTM International, West Conshohocken, PA, 2014.
21 L.Kh. Baldayeva, Gazotermicheskoe napyleniye: uchebnoe posobiye (Izd-vo: Market DS, 2007) 344 p. (in Russ).
22 M. Szala, L. Łatka, M. Awtoniuk, M. Winnicki and M. Michalak, Processes, 8, 1544 (2020).
23 L. Łatka, L. Pawłowski, M. Winnicki, P. Sokołowski, A. Małachowska and S. Kozerski, Applied Sciences, 10(15), 5153 (2020).
24 I.P. Gulyaev, Vizualizaciya gazodinamicheskoi struktury plazmennyh potokov napylitel’nogo plazmatrona “PNK-50” tenevym metodom, Vestnik Yugorskogo gosudarstvennogo universiteta, 4 (51), 61-68 (2018).
25 D. L. Alontseva, E. Ghassemieh, A.L. Krasavin, G.K. Shadrin, A.T. Kussaiyn-Murat and A.T. Kadyroldina, International Journal of Mechanical Engineering and Robotics Research, 9 (2), 280-286 (2020).
26 V.I. Kalita, D.A. Malanin, A.I. Mamaev, V.A. Mamaeva, V.V. Novochadov, D.I. Komlev, V.S. Komlev and A.A. Radyuk, Materialia, 15 (2021).