Timing detectors setup prototype for determining EAS axis direction

Authors

DOI:

https://doi.org/10.26577/RCPh.2021.v79.i4.01

Keywords:

extensive air showers, scintillation detector, amplitude signal

Abstract

This work presents a prototype setup for determining extensive air showers (EAS) axis direction. The detector system consists of four scintillation detectors (100x100x1 cm) using wavelength-shifted fibers light collection. This prototype will make it possible to create system of detectors with fast timing (timing detectors) and supplement the complex shower installation, located at 3340 m above sea level at the Tien Shan High-altitude Scientific Station (TSHSS) near Almaty, Kazakhstan.

A method for determination the direction of extensive air showers is described. It is indicated that to assess the determination of extensive air showers direction, it is necessary to define azimuth and zenith angles with required accuracy.

In this work, calibration of detectors with vertical cosmic muons is presented. To calibrate the detectors, a test bench was assembled, and its schematic representation is shown. The signals from scintillation detectors were analyzed using a CAEN DT 5725 8-channel analog-to-digital converter. In addition, there is a discussion of the preliminary results from calibration. Single-particle calibration of detectors will allow estimating the number of particles passed through the scintillation detector.

References

1 R. Beisembaev et al., in proceedings of EPJ Web of Conferences, 208, 06002 (1-4) (2019).

2 MELZ-FEU, 4922-y pr-d, 4с5, 124482 http://www.melz-feu.ru.

3 CAEN S.p.A. Via della Vetraia, 11, 55049. http://caen.it.

4 N.N. Prokopenko Dissertation for the degree of candidate of physical and mathematical sciences, 2020.

5 Kido Eiji et. all, ICRC2017, POS 386 (1-8) (2017).

6 I.А. Shulzhenko et al., Izvestiya RAN, Seriya Fizicheskaya, № 4, 524 (2017). (in Russ).

7 I.А. Shulzhenko et al., Izvestiya RAN, Seriya Fizicheskaya, № 3, 710–712 (2015). (in Russ).

8 N.V. Ampilogov, S.P. Denisov, R.P. Kokoulin, A.A. Petrukhin, N.N. Prokopenko, I.A. Shulzhenko, I.B. Unatlokov, I.I. Yashin, Journal of Instrumentation, 12(7), C07004 (2017).

9 V.M. Aynutdinov, C.B. Bonifazi, A. Creusot et al., Proceedings of the 28th International Cosmic Ray Conference, 825-828 (2003).

10 S.S. Khokhlov et al., Trudy III Cherenkovskikh chteniy: Novyye metody v eksperimental'noy yadernoy fizike i fizike chastits (Мoscow: FIAN, 2010), 30 p. (in Russ).

11 A.G. Bogdanov et al., Yadernaya fizika, № 11, 1904 (2010). (in Russ).

12 G. Rodriguez, EPJ Web of Conferences, 53, 7003 (2013).

13 I.A. Shulzhenko et al. Journal of Physics. Conference Series, 409, 012098 (2013).

14 A.G. Bogdanov et al., Nuclear Physics B, 342 (2008).

15 N.S. Barbashina et al., Pribory i tekhnika eksperimenta, № 2, 26 (2008). (in Russ).

16 B.V. Antokhonov et al., Izvestiya RAN, Seriya fizicheskaya, 75, 710-712 (2011). (in Russ).

17 K. F. Peter, Reference Manual and Data Book, 255 (2010).

18 V.B. Jhansi et al., Proceedings of Science 356, Sayt eksperimenta GRAPES-3: http://grapes-3.tifr.res.in.

19 A. Haungs et al., Proc. 34th ICRC, 278 (2015).

20 Š. Radomír, 35th International Cosmic Ray Conference - ICRC2017, (2017) http://www.auger.org/archive/authors_icrc_2017.html.

Downloads

Published

2021-12-02

Issue

Section

Theoretical Physics. Nuclear and Elementary Particle Physics. Astrophysics