Piezospectroscopic analysis of mechanical stresses in Si3N4 and AlN irradiated with high-energy bismuth ions
DOI:
https://doi.org/10.26577/RCPh.2022.v81.i2.07Keywords:
silicon nitride, aluminum nitride, swift heavy ions, Raman spectra, mechanical stress, piezospectroscopyAbstract
Depth-resolved Raman piezospectroscopy was used to study residual mechanical stress profiles in polycrystalline silicon and aluminum nitrides irradiated with 710 MeV bismuth ions to fluences of 1×1012, 2×1012, and 1×1013 cm-2. It was found that stress fields of opposite signs are formed in the irradiated Si3N4 layer, separated by a buffer zone located at a depth coinciding with the thickness of the sample layer, amorphized at high ion fluences due to multiple overlapping of track regions. At great depths, tensile stresses witch magnitude reaches their maximum value in the region of the end of the ion range are detected. In contrast to Si3N4, radiation-stimulated changes in mechanical stresses in AlN were within the measurement error throughout the entire thickness of the irradiated layer, except of the near-surface region. The observed effect is associated with the different structural sensitivity of silicon and aluminum nitrides to high-density ionization - the formation of amorphous latent tracks in Si3N4 and their absence in AlN.
References
2 Q. Ma, D.R. Clarke, J. Am. Ceram. Soc., 76, 1433-1442 (1993).
3 L.C. Ciacchi, G. Grеgоri, et.al, Recent Res. Devel. Applied Spectroscopy 2, 243-272 (1999).
4 N. Murari, V. Sergo, et.al, Appl. Spectrosc. 51, 1761–1765 (1997).
5 G. Pezzotti, Key Eng. Mater. 287, 438-448 (2005).
6 A. Zhumazhanova, A. Mutali, et.al, Raman, Crystals, 11, 1313 (2021).
7 S.J. Zinkle, V.A. Skuratov, D.T. Hoelzer, B Beam Interact. Mater. At. 191, 758–766 (2002).
8 A. Janse van Vuuren, A. Ibrayeva, et.al, Ceram. Int. 46, 7155–7160 (2020).
9 A. Janse van Vuuren, A. Ibrayeva, et.al, Acta Phys. Pol. A, 136, 241–244 (2019).
10 T. Kitayama, Y. Morita, et.al, Nucl Instrum Methods Phys Res B, 356, 22-27 (2015).
11 A. Janse Van Vuuren, A. Ibrayeva, et.al, M. Latent tracks of swift Bi ions in Si3N4. Materials Research Express 7, 7, 2, 025512 (2020).
12 A. Janse Van Vuuren, A. Ibrayeva, et.al., Nucl Instrum Methods Phys Res B, 473, 16–23 (2020).
13 B. Canut, A. Ayari, et.al, Nucl Instrum Methods Phys Res B, 266, 12-13, 2819-2823 (2008).
14 Y. Morita, K. Nakajima, et.al, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 315, 142-145 (2013).
15 A. Ibrayeva, Janse van Vuuren, et.al, 20th International Conference «Radiation Effects in Insulators». Nur-Sultan (Astana), Kazakhstan. 157 (2019).
16 A. Janse van Vuuren, A. Ibrayeva, et.al, Proceedings of the 13th International Conference of the Interaction of Radiation with Solids. Minsk, Belarus, 97-99 (2019).
17 V.A. Skuratov, J. Uglov, et.al, 9th International Conference. Interaction of Radiation with Solids. Minsk, Belarus, 91-93 (2011).
18 V. Sergo, et.al, Journal of the American Ceramic Society, 79, 3, 781-784 (1996).
19 R. Vogelgesang, M. Grimsditch, J.S. Wallace, J. Appl. Phys., 92, 6, 3103-3106 (2002).
20 J. Dong, O.F. Sankey, Journal of Applied Physics, 87, 2, 958-959 (2000).
21 N. Wada, S.A. Solin, J. Wong, S. Prochazk, Journal of Non-Crystalline Solids, 43, 7-15 (1981).
22 Y. Cai, Zeng, et.al, Journal of Physical Review B, 74, 174301 (2006).
23 K. Honda, S. Yokoyama, S. Tanaka, J. Appl. Phys., 85, 7380 (1999).
24 N. Muraki, G. Katagiri, et.al, Journal of Material Science, 32. 5419-5423 (1997) .
25 V. Lughia, D.R. Clarke, Appl. Phys. Lett. 89, 241911 (2006).
26 V.A. Skuratov, N.S. Kirilkin, et.al, Nucl Instrum Methods Phys Res B, 286, 61-66 (2012).
27 G. Sattonnay S. Moll, et.al, Nucl. Instr. Meth. B, 266, 3052-3056 (2008).
28 G. Sattonnay, M.; Lahrichi et.al, J. Appl. Phys., 101, 103516 (2007).