A comparative study of DFT functionals and basis sets for describing the luminescent spectra of hexacoordinated silicon complexes
DOI:
https://doi.org/10.26577/RCPh.2023.v84.i1.07Keywords:
DFT, hexacoordinated silicon complexes, pyridine containing ligands, electronic absorption spectraAbstract
This article presents a comparative study of DFT functionals - B3LYP, BHandHLYP and CAM-B3LYP in combination with basis sets – 6-311++g(d,p), cc-pVDZ and cc-pVTZ to describe the luminescence spectra of optimized structures of neutral hexacoordinated silicon complexes. The calculation accuracy of an obtained theoretical data of an electronic absorption spectra of the structures was compared with the known experimental data. To perform comparative calculations with the experimental values, a neutral optimized structure of hexacoordinated Si(bzimpy)2 complex containing 2,6-bis(benzimidazol-2'-yl)pyridine ligand was considered. A comparison of the absorption spectra of the Si(bzimpy)2 structure showed that the use of the 6-311++g(d,p) basis set in combination with the B3LYP functional gives the best agreement with the experimental data. Based on the obtained results of the study, a comparison was made of the absorption spectra of other silicon compounds - Si(bzimpyMeO)2, Si(bzimpyMe2)2 and Si(bzimpyMeOMe2)2. Comparative graphs of the structures showed the proximity of the location of intense peaks for all four structures. Thus, we can say that the B3LYP functional gives the best agreement with the experimental data for neutral hexacoordinated silicon complexes. Also this shows that in a more detailed study of the absorption spectra, it can be noted that the use of the 6-311++g(d,p) basis set in combination with the B3LYP functional gives the most accurate values.
References
2 L. Zhang, L.-L. Wang and D.-C. Fang, ACS Omega. American Chemical Society (ACS), 7(7), 6133–6141 (2022).
3 M. Nechaev, Organometallics, 40(20), 3408–3423 (2021).
4 A. Musawwir et al., Comput. Theor. Chem., 1201, 113271 (2021).
5 B. E. Jesse, A. C. Bushnell, Quantum Chem., 122(9), 26874 (2022).
6 S. A. Tarleton et al., J. Phys. Chem. A., 126(3), 435–443 (2022).
7 M. Chołuj et al., J. Chem. Theory Comput. American Chemical Society, 18(2), 1046–1060 (2022).
8 J. C. A. Prentice, A. A. Mostofi, J. Chem. Theory Comput., 17(8), 5214–5224 (2021).
9 Y. J. Chen et al., ACS Earth Sp. Chem., 4(2), 311–320 (2020).
10 D. B. Axel, J. Chem. Phys.,140, 18A301 (2014).
11 K. Burke, J. Chem. Phys., 136(15), 150901 (2012).
12 Z. Zara et al., J. Mol. Struct. Elsevier, 1149, 282–298 (2017).
13 A.N. Bimukhanov, collection of materials XIV International scientific conference of students and young scientists «Ǵylym Jane Bilim - 2019», 381 (2019) (In Russ).
14 A.N. Bimukhanov, A.A. Aldongarov and T.A. Schmedake, Eurasian Journal of Physics and Functional Materials, 3(2), 183-190 (2019).
15 A.A. Aldongarov, A.N. Bimukhanov, Bulletin of L.N. Gumilyov Eurasian National University. Physics. Astronomy Series, 132, 59-66 (2020).
16 M. Kocherga et al., Chem. Commun., 54(100), 14073–14076 (2018).
17 A. K. Jen, V. P. Rao, K. Y. Wong and K. J. Drost, J. Chem. Soc., Chem. Commun., 1, 90–92 (1993).
18 A. Janaki, V. Balachandran and A. Lakshmi, Indian J. Pure Appl. Phys., 51, 601–614 (2013).
19 K. Garrett et al., J. Chem. Theory Comput., 10, 3821–3831 (2014).
20 T. L. Kinnibrugh et al., Organometallics, 28, 1350–1357 (2009).
21 F. Meyers et al., J. Am. Chem. Soc., 116, 10703–10714 (1994).
22 S. S. Mao et al. // Chem Mater., 10, 146–155 (1998).
23 Frisch M. J., Trucks G. W., Schlegel H. B. Gaussian 09, Revision C.01. - Gaussian, Inc., Wallingford CT, 2010.
24 A. D. Becke, J. Chem. Phys., 98, 5648 (1993).
25 C. Lee et al., // Phys. Rev., 37, 785 (1988).
26 P. J. Stephens et al., J. Phys. Chem., 98, 11623 (1994).
27. T. Yanai, D. P. Tew and N. C. Handy, Chem. Phys. Lett., 393(1–3), 51–57 (2004).
28 A. D. McLean, G. S. Chandler, J. Chem. Phys., 72, 5639-48 (1980).
29 R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, J. Chem. Phys., 72, 650-54 (1980).
30 J. P. Blaudeau, M. P. McGrath, L. A. Curtiss and L. Radom, J. Chem. Phys., 107, 5016-21 (1997).
31 A. J. H. Wachters, J. Chem. Phys., 52, 1033 (1970).
32 P. J. Hay, J. Chem. Phys., 66, 4377-84 (1977).
33 K. Raghavachari, G. W. Trucks, J. Chem. Phys., 91, 1062-65 (1989).
34 R. C. Jr. Binning, L. A. Curtiss, J. Comp. Chem., 11, 1206-16 (1990).
35 M. P. McGrath, L. Radom, J. Chem. Phys., 94, 511-16 (1991).
36 L. A. Curtiss et al., J. Chem. Phys., 103(14), 6104-13 (1995).
37 T. H. Jr. Dunning, J. Chem. Phys., 90, 1007-23 (1989).
38 R. A. Kendall, T. H. Jr. Dunning, R. J. Harrison, J. Chem. Phys., 96, 6796-806 (1992).
39 D. E. Woon, T. H. Jr. Dunning, J. Chem. Phys., 98, 1358-71 (1993).
40 K. A. Peterson, D. E. Woon and T. H. Jr. Dunning, J. Chem. Phys., 100, 7410-15 (1994).
41 A. K. Wilson, T. van Mourik and T. H. Jr. Dunning, J. Mol. Struct. (Theochem), 388, 339-49 (1996).
42 E. R. Davidson, Chem. Phys. Lett., 260, 514-18 (1996).
43 GaussView, Version 6.1, Roy Dennington, Todd A. Keith, and John M. Millam, Semichem Inc., Shawnee Mission, KS, 2016.
44 M. Kocherga et al., Mater. Adv., 3, 2373–2379 (2021).