SYNTHESIS OF CARBON NANOFIBERS AND DIAMOND-LIKE CARBONS BY THE OXYGEN-ACETYLENE TORCH METHOD

Authors

DOI:

https://doi.org/10.26577/RCPh.2022.v83.i4.03
        195 68

Keywords:

көміртекті наноматериалдар, көміртекті наноталшықтар, алмаз тәрізді көміртек, оттегі-ацетиленді жанарғы, сканерлеуші электронды микроскопия, жарықтың комбинациялық шашырауы.

Abstract

This work presents the synthesis of carbon nanofibers and diamond-like carbons by the oxygen-acetylene burner method. Acetylene was used as a carbon source, and metallic films sprayed on silicon substrates were used as a catalyst. The morphological and structural properties of the obtained carbon nanomaterials were studied by scanning electron microscopy and Raman spectroscopy. The influence of the synthesis duration and gas concentration ratio on the structure formation of the deposited samples was studied during the experiments. Diamond-like carbon was synthesized at low gas flow rates and short synthesis times, and carbon nanofibers were obtained when these parameters were increased. The synthesized carbon nanofibers have a cylindrical shape with a diameter of about 50 to 215 nm, and their length reaches several micrometers. The size of diamond-like carbons ranges from 150 to 580 nm. Raman spectroscopy determined that carbon nanofibers have a better degree of ordering and graphitization. According to the results of the studies carried out in this work, the oxygen-acetylene burner can be used as a promising, low-cost alternative for the large-scale production of carbon nanomaterials.

References

1. Luo, Mingchuan, and Shaojun Guo, Nature Reviews Materials 2.11, 1-13, (2017).
2. Yang Y. et al., Mater. Sci. Eng. R Reports 102, 1-72, (2016).
3. Tae-Hee H. et al., Nat. Photonics 6.2, 105-110, (2012).
4. Villarreal, Claudia C., et al., Current Opinion in Electrochemistry 3.1, 106-113, (2017).
5. Nasir, Salisu, et al., Materials 11.2, 295, (2018).
6. Islam, Md Saidul, Yuta Shudo, and Shinya Hayami, Bulletin of the Chemical Society of Japan 95.1, 1-25, (2022).
7. Suarez-Martinez, Irene, Nicole Grobert, and Christopher Ewels, Carbon. 50, 741-747, (2011).
8. D. Sebastia´n, I. Suelves, M.J. La´zaro, R. Moliner, Power Sources 192, 51-56, (2009).
9. D. Sebastia´n, A.G. Ruiz, I. Suelves, R. Moliner, M.J. La´zaro, Mater. Sci. 48, 1423-1435, (2013).
10. Lu, Yimin, et al., Journal of Materials Science 1-22, (2022)
11. Love, C. A., et al., Tribology International 63, 141-150, (2013).
12. Jariwala, Deep, et al., Chemical Society Reviews 42.7, 2824-2860, (2013).
13. Pumera, Martin, Energy & Environmental Science 4.3, 668-674, (2011).
14. Ku, Sook Hee, Minah Lee, and Chan Beum Park, Advanced healthcare materials 2.2, 244-260, (2013).
15. Teradal, Nagappa L., and Raz Jelinek, Advanced healthcare materials 6.17, 1700574, (2017).
16. Menéndez-Manjón, Ana, et al., Journal of Nanoparticle Research 13.9, 3911-3922, (2011).
17. Ndukwu, M. C., et al., Materials science for energy technologies 3, 690-699, (2020).
18. Yu, Jingxue, et al., Chemical science 6.12, 6705-6716, (2015).
19. Choi, Dong Sung, et al., Advanced materials 28.33, 7115-7122, (2016).
20. Liu, Rulin, et al., Journal of Nanoscience and Nanotechnology 14.2, 1647-1657, (2014).
21. Nozaki, Tomohiro, et al., Carbon 48.1, 232-238, (2010).
22. Ismail, Raid A., et al., Physica E: Low-dimensional Systems and Nanostructures 119, 113997, (2020).
23. Ganash, Entesar A., Ghaliah A. Al-Jabarti, and Reem M. Altuwirqi, Materials Research Express 7.1, 015002, (2019).
24. Zhang, Da, et al., Carbon 142, 278-284, (2019).
25. Corbella, Carles, et al., " Plasma Sources Science and Technology 28.4, 045016, (2019).
26. Yao, Dingding, and Chi-Hwa Wang. Applied Energy 265, 114819, (2020).
27. Zhang, Shun, et al., Nature Sustainability 3.9, 753-760, (2020).
28. Shi, Xiaomin, et al., Journal of Nanomaterials 2015, 20, (2015).
29. Ding, Yichun, et al., Progress in Polymer Science 61, 67-103, (2016).
30. Kuok, Fei-Hong, et al., Applied Surface Science 425, 67-103, (2017).
31. Fronczak, Maciej, et al., Chemical Engineering Journal 322, 385-396, (2017).
32. Zhang, Biao, et al., Progress in Materials Science 76, 319-380. (2016).
33. Oulanti, Hanae, et al., Carbon 95, 261-267, (2015).
34. Liu, Ting-Chi, and Yuan-Yao Li. Carbon 44.10, 2045-2050, (2006).
35. Zhumadilov, Bauyrzhan, et al., Materials Today: Proceedings. 31. 412-416, (2020).
36. Kim, Yoong A., et al., Springer handbook of nanomaterials. Springer, Berlin, Heidelberg, 233-262, (2013).
37. Lei, Shu-mei, et al., New Carbon Materials 22.1, 70-73, (2007).
38. Pang, Hua, et al., Applied surface science 256.21, 6403-6407, (2010).
39. Ray, Sekhar C., W. F. Pong, and P. J. T. S. F. Papakonstantinou, Thin Solid Films 610, 42-47, (2016).

Downloads

How to Cite

Zhumadilov, B., Kenzhegulov, A., Medyanova, B., Ospanali, A., Suyundykova, G., Partizan, G., Yerlanuly, Y., & Gabdullin, M. (2022). SYNTHESIS OF CARBON NANOFIBERS AND DIAMOND-LIKE CARBONS BY THE OXYGEN-ACETYLENE TORCH METHOD. Recent Contributions to Physics (Rec.Contr.Phys.), 83(4), 22–28. https://doi.org/10.26577/RCPh.2022.v83.i4.03

Issue

Section

Condensed Matter Physics and Materials Science Problems. NanoScience

Most read articles by the same author(s)

1 2 > >>