Energy picture of the gravitational field of the Solar system

Authors

DOI:

https://doi.org/10.26577/RCPh.2022.v83.i4.07
        135 85

Keywords:

Keywords: Mathcad application software package, potential energy graph,

Abstract

 In the article, on the basis of the energy approach, the phenomenon of interaction between a spacecraft (spacecraft), the Sun and planets is theoretically investigated. To study the energy characteristics of the interaction of these celestial bodies, a hypothetical model was chosen: the Sun, Earth and Venus are "fixed" at the moment of the parade of planets.

The purpose of this work is to determine the values of the potential energy of a unit mass in the gravitational field of the Solar system at each point of a straight line. These straight lines connect the centers of these celestial bodies. To do this, we consider the movement of spacecraft from the Earth's surface to the surface of Venus and the Sun.

The regularities of the potential energy of interaction (binding energy) of the spacecraft with celestial bodies are investigated using computer calculations. The Mathcad application software package is used as a computer tool. Using Mathcad, a graph of the total potential energy of the Solar System was constructed. Using the computational capabilities of the Mathcad, graphs of the potential energy of these planets were studied. The operation of the spacecraft engine required to move it from the surface of the Earth to the surface of Venus (to the surface of Mercury or the Sun) was calculated. The graphs of potential energy at points near each planet (the potential pit of the planet) have been studied using computer tools of the Mathcad.

Keywords: Mathcad application software package, potential energy graph, "transplant" point, parade of planets, generalized energy picture.

References

1 Левантовский В. И., Механика космического полета в элементарном изложении.- М.: Наука. Физматлит, 1980.- 512 с.
2 Киттель Ч., Найт В., Рудерман М. Механика (Берклеевский курс физики) Учебное руководство. - Москва: Наука. Физматлит, 1983. - 448 с.
3 Feynman R., Leighton R., Sands M. The Feynman lectures on physics. Volume 2. - London: Addison-wesley publishing company, 1964. - 288 p.
4 Interplanetary flight. http://www.braeunig.us/space/interpl.htm
5 Connor Martz, Sheldon Van Middelkoop, Ioannis Gkigkitzis,
Ioannis Haranas ,Ilias Kotsireas. Yukawa Potential Orbital Energy: Its Relation to
Orbital Mean Motion as well to the Graviton Mediating the
Interaction in Celestial Bodies // Hindawi Advances in Mathematical Physics Volume 2019, Article ID 6765827, 10 pages https://doi.org/10.1155/2019/6765827
6 McNutt, R. L. Jr., Solar System Exploration: A Vision for the Next Hundred Years, IAC-04-IAA.3.8.1.02, 55th International Astronautical Congress, Vancouver, Canada, http://www.lpi.usra.edu/opag/mcnutt_IAApaper.pdf (2004).
7 Torres-Silva. “Electrodinámica Quiral: Eslabón para la Unificación del Electromagnetismo y la Gravitación”. Ingeniare. Revista chilena de ingeniería. Vol. 16 nº especial, pp. 6-23. 2008. URL: http://www. scielo.cl/scielo. php?script = sci_arttext&pid = S0718-33052008000400002&lng = es&nrm = iso>. doi: 10.4067/S0718-330520080004 00002.
8 Optimization of the interplanetary flight to Mars with three-pulse approach to Phobos based on Lagrange principle // Journal of Physics Conference Series 1864(1):012130. - May 2021. https://www.researchgate.net/publication/351756741_Optimization_of_the_interplanetary_flight_to_Mars_with_three-pulse_approach_to_Phobos_based_on_Lagrange_principle
9 Shane D Ross. The Interplanetary Transport Network // American Scientist 94(3):230. - May 2006 DOI:10.1511/2006.3.230 Virginia Polytechnic Institute and State University. https://www.researchgate.net/publication/260362544_The_Interplanetary_Transport_Network
10 Мукушев Б.А. Пакет прикладных программ Mathcad // Вестник КазАТУ. – 2022. - №2 (113). Ч.2. – С. 197-202.
11 Nelson F. Using mathcad to simplify uncertainty computations in a laboratory course // Computer Applications in Engineering Education. - 2014.- Vol. 23. - № 2. - P. 250-257.
12 Мукушев Б.А., Мукушев А.Б., Таширова М.Б., Аширбаева Д.Н., Калхаман К.С., Салмырза Г.Ж., Сахиева С.М. Реализация вычислительных экспериментов для изучения небесной механики на основе энергетического подхода // Вестник ЕНУ (Физика). - 2021. - № 3. - C. 25-34.

References

1 Levantovsky V. I., Mekhanika kosmicheskogo poleta v elementarnom izlozhenii [Mechanics of space flight in an elementary presentation]. - M.: Nauka. Fizmatlit, 1980 - 512 p. [in Russian]
2 Kittel Ch., Knight V., Ruderman M. Mechanica [Mechanics] (Berkeley Physics course) Textbook (Moscow: Nauka.Fizmatlit, 1983, 448 p.). [in Russian]
3 Feynman R., Leighton R., Sands M. The Feynman lectures on physics. Volume 2. - London: Addison-wesley publishing company, 1964. – 288 p.
4 Interplanetary flight. http://www.braeunig.us/space/interpl.htm
5 Connor Martz, Sheldon Van Middelkoop, Ioannis Gkigkitzis,
Ioannis Haranas ,Ilias Kotsireas. Yukawa Potential Orbital Energy: Its Relation to
Orbital Mean Motion as well to the Graviton Mediating the
Interaction in Celestial Bodies // Hindawi Advances in Mathematical Physics Volume 2019, Article ID 6765827, 10 pages https://doi.org/10.1155/2019/6765827
6 McNutt, R. L. Jr., Solar System Exploration: A Vision for the Next Hundred Years, IAC-04-IAA.3.8.1.02, 55th International Astronautical Congress, Vancouver, Canada, http://www.lpi.usra.edu/opag/mcnutt_IAApaper.pdf (2004).
7 Torres-Silva. “Electrodinámica Quiral: Eslabón para la Unificación del Electromagnetismo y la Gravitación”. Ingeniare. Revista chilena de ingeniería. Vol. 16 nº especial, pp. 6-23. 2008. URL: http://www. scielo.cl/scielo. php?script = sci_arttext&pid = S0718-33052008000400002&lng = es&nrm = iso>. doi: 10.4067/S0718-330520080004 00002.
8 Optimization of the interplanetary flight to Mars with three-pulse approach to Phobos based on Lagrange principle // Journal of Physics Conference Series 1864(1):012130. - May 2021. https://www.researchgate.net/publication/351756741_Optimization_of_the_interplanetary_flight_to_Mars_with_three- pulse_approach_to_Phobos_based_on_Lagrange_principle
9 Shane D Ross. The Interplanetary Transport Network // American Scientist 94(3):230. - May 2006 DOI:10.1511/2006.3.230 Virginia Polytechnic Institute and State University. https://www.researchgate.net/publication/260362544_The_Interplanetary_Transport_Network
10 Mukushev B.A. The package of applied Mathcad programs // Bulletin of KazATU. – 2022. - №2 (113). Part 2. – pp. 197-202. [in Russian]
11 Nelson F. Using mathcad to simplify uncertainty computations in a laboratory course //Computer Applications in Engineering Education. - 2014.- Vol. 23. - № 2. - P. 250-257.
12 Mukushev B.A., Mukushev A.B., Tashirova M.B., Ashirbaeva D.N., Kalhaman K.S., Salmyrza G.Zh., Sakhieva S.M. Realizaciya vychislitel’nyh eksperimentov dlya izucheniya nebesnoj mekhaniki na osnove energeticheskogo podhoda, Vestnik ENU (Fizika) [Implementation of computational experiments for the study of celestial mechanics based on the energy approach, Bulletin of ENU (Physics)], 3, 25-34 (2021). [in Russian]

Downloads

How to Cite

Mukushev, B. (2022). Energy picture of the gravitational field of the Solar system. Recent Contributions to Physics (Rec.Contr.Phys.), 83(4), 59–66. https://doi.org/10.26577/RCPh.2022.v83.i4.07

Issue

Section

Methods of teaching high school physics