Accommodation processes in irradiated steel 12Х18Н10Т during plastic deformation in the temperature range of “dry” SNF storage

Authors

DOI:

https://doi.org/10.26577/RCPh.2024.v91.i4.a5

Keywords:

austenitic steel, plasticity, accommodation, fractography, microstructure.

Abstract

This paper presents a detailed study of the fracture surfaces of 12Kh18N10T austenitic stainless-steel specimens subjected to short-term mechanical testing at various temperatures: 24°C, 350°C, and 450°C. The specimens for the study were fabricated from spent nuclear fuel of the BN-350 reactor.

The research was conducted within the framework of a multi-level approach to physical mesomechanics, which allowed for a deeper understanding of the complex processes occurring in the material under different temperature regimes. In particular, a thorough analysis of the changes in the steel's plasticity with increasing test temperature was carried out, revealing a significant dependence of this parameter on the conditions of deformation localization. It was shown that the reduction in plasticity with increasing test temperature is associated with a quasi-uniform distribution of stresses in the zones of deformation localization. These zones of local stress concentration were caused by processes that led to an increase in the material's porosity, which, in turn, was due to accommodation processes of the rotational type.

Thus, the study demonstrated the importance of considering local changes in the material's structure, which can significantly affect its mechanical properties under varying operating conditions. The obtained results may contribute to a deeper understanding of the processes occurring in austenitic steels used in extreme conditions and aid in the development of more reliable materials for use in nuclear and other high-stress systems.

Author Biographies

T. Aldabergenova, Institute of Nuclear Physics, Almaty, Kazakhstan

PhD, Institute of Nuclear Physics, Almaty, Kazakhstan; e-mail: tamaramus@inp.kz

S. Akayev, Institute of Nuclear Physics, Almaty, Kazakhstan

corresponding author, Institute of Nuclear Physics, Almaty, Kazakhstan; e-mail: s.akayev@inp.kz

А., Institute of Nuclear Physics, Almaty, Kazakhstan

Candidate of Technical Sciences, Institute of Nuclear Physics, Almaty, Kazakhstan; e-mail: dikov@inp.kz

А. Larionov, Institute of Nuclear Physics, Almaty, Kazakhstan

Institute of Nuclear Physics, Almaty, Kazakhstan; e-mail: larionov@inp.kz

L. Dikova, Institute of Nuclear Physics, Almaty, Kazakhstan

Institute of Nuclear Physics, Almaty, Kazakhstan; e-mail: l.dikova@inp.kz

References

Konarski P., Cozzo C., Khvostov G., Ferroukhi H. Spent nuclear fuel in dry storage conditions – current trends in fuel performance modeling // Journal of Nuclear Materials. – 2021. – Vol. 555. – Art.No. 153138. https://doi.org/10.1016/j.jnucmat.2021.153138

Poinssot C., Toulhoat P., Gras J.-M., Vitorge P. Long term evolution of spent nuclear fuel in long term storage or geological disposal. New findings from the French PRECCI R&D program and implications for the definition of the RN source term in geological repository // Journal of Nuclear Science and Technology. – 2014. – Vol. 39. – P. 473-476. https://doi.org/10.1080/00223131.2002.10875509

Was G. S., Fundamentals of Radiation Materials Science: Metals and Alloys. Second Edition. – Springer New York, 2017.

Metals Handbook: Fractography and Atlas of Fractographs. Volume 9 (8th Edition). – American Society for Metals, 1974.

Балтер М.А., Любченко А.П., Аксенова С.И., Фрактография - средство диагностики разрушенных деталей. – М.: Машиностроение, 1987.

Metals Handbook: Fractography. Volume 12 (9th edition). – ASM International, 1987.

Dikov A.S., Chernov I.I., Kislitsin S.B. Influence of the Test Temperature on the Creep Rate of 0.12C18Cr10NiTi Structural Steel Irradiated in the BN-350 Reactor // Inorganic Materials: Applied Research. – 2018. – Vol. 9(3). – P. 357–360.

Матвиенко Ю.Г., Модели и критерии механики разрушения. – М.: Физматлит, 2006.

Merezhko M. S., Maksimkin O. P., Merezhko D. A., Shaimerdenov A. A., Short M. P. Parameters of Necking Onset during Deformation of Chromium–Nickel Steel Irradiated by Neutrons // The Physics of Metals and Metallography. – 2019. – Vol. 120(7). – P. 716-721.

Jia Xi., Hao K., Luo Zh., Fan Zh. Plastic Deformation Behavior of Metal Materials: A Review of Constitutive Models //Metals. – 2022. – Vol.12. – P. 2077.

Macek W., Robak G., Żak K., Branco R. Fracture surface topography investigation and fatigue life assessment of notched austenitic steel specimens // Engineering Failure Analysis. – 2022. – Vol.135. – Art.No.106121.

Sun Y.T., Kong X., Wang Z.B. Superior mechanical properties and deformation mechanisms of a 304 stainless steel plate with gradient nanostructure // International Journal of Plasticity. – 2022. – Vol.155. – Art.No.103336. https://doi.org/10.1016/j.ijplas.2022.103336

Panin V.E., Polyakov V.V., Syrov G.V. Evolution of mechanisms of plastic deformation in porous metals // Russ Phys J. – 1996. – No.39. – P. 92–96. https://doi.org/10.1007/BF02069250

Liu F., Fa T., Chen P.H., Wang J. T. Steady-state characteristics of fcc pure metals processed by severe plastic deformation: experiments and modelling // Philosophical Magazine A. – 2020. – Vol.100. – P. 62-83. https://doi.org/10.1080/14786435.2019.1671621.

Liu H., Hu R., Xia X., Yu S. Texture Evolution and Plastic Deformation Mechanism of Cold-Drawn Co-Cr-Ni-Mo Alloy // Metals. – 2024. – Vol.14(6). – P.642. https://doi.org/10.3390/met14060642

Панин Е.В., Лихачев В.А., Гриняев Ю.В., Структурные уровни деформации твердых тел. – Н.: Наука, 1985.

Рыбин В.В., Большие пластические деформации и разрушение металлов. – М.: Металлургия, 1986.

Ask A., Forest S., Appolaire B., Ammar K. A Cosserat-phase-field theory of crystal plasticity and grain boundary migration at finite deformation // Continuum Mech. Thermodyn. – 2019. – Vol.31. – P. 1109-1141.

Fressengeas C., Upadhyay M.V. A continuum model for slip transfer at grain boundaries // Adv. Model. and Simul. in Eng. Sci. – 2020. – Vol.7. – Art. No.12. https://doi.org/10.1186/s40323-020-00145-6

He J., Admal N. Ch. Polycrystal plasticity with grain boundary evolution: a numerically efficient dislocation-based diffuse-interface model // Modelling Simul. Mater. Sci. Eng.– 2022. – Vol.30. – Art.No. 025006. https://doi.org/10.1088/1361-651X/ac2f84

Cappola J., Wang J., Li L. A dislocation-density-based crystal plasticity model for FCC nanocrystalline metals incorporating thermally-activated depinning from grain boundaries // International Journal of Plasticity. – 2024. – Vol.172. – Art.No. 103863. https://doi.org/10.1016/j.ijplas.2023.103863

Останина Т.В., Швейкин А.И., Трусов П.В. Измельчение зеренной структуры металлов и сплавов при интенсивном пластическом деформировании: экспериментальные данные и анализ механизмов // Вестник ПНИПУ. МЕХАНИКА. – 2020. – No.2. – P. 85-111. https://doi.org/10.15593/perm.mech/2020.2.08

Neverov V.V., Zhitnikov P.P. Rotations of material in the shearing plastic deformation of thin layers // Soviet Physics Journal. – 1989. – No.32. – P. 140–143.

Chen B., Zhu L., Xin Y., Lei J. Grain Rotation in Plastic Deformation // Quantum Beam Science. – 2019. – Vol.3(3). – P. 17. https://doi.org/10.3390/qubs3030017

Zhou Y., Wu W., Li J. Heterostructures impacting deformation strengthening processes in QP steels: Investigating the interplay of grain rotation, slip transfer, and back stress strengthening // Journal of Materials Research and Technology. – 2024. –Vol.29. – P. 5340-5353. https://doi.org/10.1016/j.jmrt.2024.02.225

How to Cite

Aldabergenova Т. ., Akayev С. ., А.С., Larionov А. ., & Dikova Л. . (2024). Accommodation processes in irradiated steel 12Х18Н10Т during plastic deformation in the temperature range of “dry” SNF storage. Recent Contributions to Physics (Rec.Contr.Phys.), 91(4), 48–55. https://doi.org/10.26577/RCPh.2024.v91.i4.a5

Issue

Section

Condensed Matter Physics and Materials Science Problems. NanoScience

Most read articles by the same author(s)