Limiting parametersof deuterium-tritium plasma in medium size tokamak with high-power injection heating

Authors

  • А.Н. Aльмaгaмбетов N.E. Bauman Moscow State Technical University, Russia, Moscow
  • А.Ю. Чирков N.E. Bauman Moscow State Technical University, Russia, Moscow
        22 17

Keywords:

fusion plasma, fast neutron source, tokamak, neutral beam injection heating, fast ions

Abstract

Fusion systems with low plasma power gain factor Q ~ 1 can be considered as controlled source of fusion neutrons for a hybrid fusion-fission reactors. Significant population of fast ions can be supported by a powerful neutral beam injection in regimes with Q ~ 1. The reaction rate for fast ions greatly exceeds the rate for thermal Maxwellian ions. Present day magnetic fusion devices can be considered as prototypes ofsuch systems. The possible ranges of the neutron source parameters are discussed for medium size tokamaks (plasma radius of 0.5 to 1 m). Thepossibility of regimes with Q ~ 1 is justified.

References

1 Stacey W.M. Tokamak D–T fusion neutron source requirements for closing the nuclear fuel cycle // Nucl. Fusion. – 2007. – V. 47. – P. 217–221.

2 Kotschenreuther M., Mahajan S., Valanju P., et al. Near term fusion-fission hybrids // Fusion Eng. Design. – 2009. – V. 84. – P. 83–88.

3 Moir R.W., Manheimer W. The fusion hybrid as a key to sustainable development (Chapter 14) // Lecture Notes in Energy. – 2013. – V. 19. – P. 699–472.

4 Kuteev B.V., Azizov E.A., Bykov A.S., et al. Steady-state operation in compact tokamaks with copper coils // Nuclear Fusion. – 2011. – V. 51. – 073013 (6 p.).

5 Azizov E.A., Dokouka V.N., Dvorkin N.Ya., et al. Kazakhstan tokamak for material testing // Plasma Devices and Operations. – 2003. – V. 11 (1). – P. 39–55.

6 Chirkov A.Yu. Optimal parameters of fusion neutron sources with powerful injection heating // Journal of Fusion Energy. – 2015. – V. 34. – P. 528–531.

7 Chirkov A.Yu. Evaluation of the operational parameters for NBI-driven fusion in low-gain tokamak with two-component plasma // Nucl. Fusion. – 2015. – V. 55. – 113027 (8p.).

8 Хвесюк В.И., Чирков A.Ю. Aнaлиз зaкономерностей рaссеяния чaстиц плaзмы нa нестaционaрных флуктуaциях // ЖТФ. 2004. – Т. 74. – Вып. 4. – С. 18–26.

9 Чирков A.Ю. О влиянии слaбых электростaтических возмущений нa трaектории пролетных чaстиц в мaгнитном поле токaмaкa // ЖТФ. – 2004. – Т. 74. – Вып. 12. – С. 47–51.

10 Чирков A.Ю., Хвесюк В.И. К рaсчету функций рaспределения высокоэнергетичных ионов по скоростям // ВAНТ. Сер. Термоядерный синтез. – 2003. – Вып. 1. – С. 55–65.

11 Bosh H.-S., Hale G.M. Improved formulas for fusion cross-sections and thermal reactivities // Nucl. Fusion. – 1992. – V. 32. – P. 611–631.

12 Чирков A.Ю. Энергетическaя эффективность aльтернaтивных термоядерных систем с мaгнитным удержaнием плaзмы // Ядернaя физикa и инжиниринг. – 2013. – Т. 4. – С. 1050–1059.

13 Gormezano C., et al. Progress in ITER Physics Basis: Chapter 6: Steady state operation // Nucl. Fusion. – 2007. – V. 47. – P. S285–S336.

14 Mirnov S.V. From pure fusion to fusion–fission Demo tokamaks // Plasma Phys. Control. Fusion. – 2013. – V. 55. – 045003 (9 p.).

15 Chirkov A.Yu. Low radioactivity fusion reactor based on the spherical tokamak with a strong magnetic field // Journal of Fusion Energy. – 2013. – V. 32. – P. 208–214.

Downloads

Published

2016-04-27