Influence of hydrothermal reaction period of ZnO nanorod arrays on recombination processes in dye sensitized solar cell

Authors

  • Б.Р. Ильясов Institute of Molecular Nanophotonics, E.A. Buketov Karaganda State University, Kazakhstan,Karaganda; Laboratory of Solar Energy, NLA, Nazarbayev University, Kazakhstan, Astana
  • Н.Х. Ибраев Institute of Molecular Nanophotonics, E.A. Buketov Karaganda State University, Kazakhstan,Karaganda; Laboratory of Solar Energy, NLA, Nazarbayev University, Kazakhstan, Astana
        52 30

Keywords:

nanorod, recombination processes, DSSC solar cell

Abstract

ZnO nanorod arrays were synthetized by hydrothermal deposition technique. Influence of hydrothermal reaction period on specific surface of the nanorod arrays and photovoltaic properties of DSSCs based on ZnO nanorods was studied. Optimal hydrothermal reaction period for growing of ZnO nanorod arrays was determined. It was founded that recombination rate of electrons at ZnO/electrolyte interface and effective diffusion coefficient of electrons in ZnO increase by extending hydrothermal reaction period. Possible explanations of observed phenomena have been offered.

References

1 O’Regan B., Grätzel M. A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. // Nature. – 1991. – V. 353(6346) – P. 737–740.

2 Nazeeruddin M.K., Pechy P., Renouard T., Zakeeruddin S.M., Humphry-Baker R., Comte P., Liska P., Cevey L., Costa E., Shklover V., Spiccia L., Deacon G.B., Bignozzi C.A., Gratzel M. Engineering of efficient panchromatic sensitizers for nanocrystal¬line TiO2-based solar cells. // J. Am. Chem. Soc. – 2001. – V. 123. – P. 1613–1624.

3 Grant C.D., Schwartzberg A.M., Smestad G.P., Kowalik J., Tolbert L.M., Zhang J.Z. Characterization of nanocrystalline and thin film TiO2 solar cells with poly(3-undecyl-2,2’-bithiophene) as a sensitizer and hole conductor. // J. Electroanal. Chem. – 2002. – V. 522. – P. 40–48.

4 Ma T., Akiyama M., Abe E., Imai I. High-Efficiency Dye-sensitized solar cell based on a Nitrogen-doped nanostructured Titania electrode. // Nano Lett. – 2005. –V. 5. – P. 2543–2547.

5 Crossland E.J.W., Kamperman M., Nedelcu M., Ducati C., Wiesner U., Smilgies D.M., Toombes G.E.S., Hillmyer M.A., Ludwigs S., Steiner U., Snaith H.J. A bicontinuous double gyroid hybrid solar cell. // Nano Lett. – 2009. – V. 9. – P. 2807–2812.

6 Guldin S., Hüttner S., Kolle M., Welland M.E., Mller-Buschbaum P., Friend R.H., Steiner U., Tétreault N. Dye-sensitized solar cell based on a three-dimensional photonic crystal. // Nano Lett. – 2010. – V. 10. – P. 2303–2309.

7 Yang Z., Xu T., Ito Y., Welp U., Kwok W.K. Enhanced electron transport in dye-sensitized solar cells using short ZnO nano¬tips on a rough metal anode. // J. Phys. Chem. C. – 2009. – V. 113. – P. 20521–20526.

8 Nissfolk J., Fredin K., Hagfeldt A., Boschloo G. Recombination and transport processes in dye-sensitized solar cells inves-tigated under working conditions. // J. Phys. Chem. B. – 2006. – V. 110. – P. 17715–17718.

9 Grätzel M. Solar energy conversion by dye-sensitized photovoltaic cells. // Inorg. Chem. – 2005. – V. 44. – P. 6841–6851.

10 Grätzel M. Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. // J. Photochem. Photobiol. A. – 2004. – V. 164. – P. 3–14.

11 Baruah S., Dutta J. Hydrothermal growth of ZnO nanostructures // Sci. Technol. Adv. Mater. – 2009. – V. 10. – P. 013001.

12 Lamia Z. Sol–gel-deposited ZnO thin films // Materials Science and Engineering B. – 2010. –V. 174. – P. 18–30.

13 Skompska M., Zarebska K. Electrodeposition of ZnO Nanorod Arrays on Transparent Conducting Substrates // Electrochi¬mica Acta. – 2014. – V. 127. – P. 467–488.

14 Law M., Greene L.E., Yang P. Nanowire dye-sensitized solar cells. // Nature Materials. – 2005. – V. 4. – P. 455–459.

15 Gao Y. Solution-Derived ZnO Nanowire Array Film as Photoelectrode in Dye-Sensitized Solar Cells. // Crystal Growth and Design. – 2007. – V. 7, № 12. – P. 2467–2471.

16 Kaidashev E.M. et al. High electron mobility of epitaxial ZnO thin films on c-plane sapphire grown by multistep pulsed-laser deposition. // Applied Physics Letters. – 2003. – V. 82, № 22. – P. 3901–3903.

17 Hendry E. et al. Local field effects on electron transport in nanostructured TiO2 revealed by terahertz spectroscopy. // Nano Letters. – 2006. – V. 6, № 4. – P. 755–759.

18 Bisquert J. Theory of the Impedance of Electron Diffusion and Recombination in a Thin Layer. // J. Phys. Chem. B. – 2002. – V. 106, № 2. – P. 325–333.

19 Adachi M., Sakamoto M., Jiu J., Ogata Y., Isoda S. Determination of Parameters of Electron Transport in Dye-Sensitized Solar Cells Using Electrochemical Impedance Spectroscopy. // J. Phys. Chem. B. – 2006. – V. 110. – P. 13872–13880.

20 Kern R., Sastrawan R., Ferber J., Stangl R., Luther J. Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions. // Electrochimica Acta. – 2002. – V. 47. – P. 4213–4225.

Downloads

How to Cite

Ильясов, Б., & Ибраев, Н. (2016). Influence of hydrothermal reaction period of ZnO nanorod arrays on recombination processes in dye sensitized solar cell. Recent Contributions to Physics (Rec.Contr.Phys.), 59(4), 56–62. Retrieved from https://bph.kaznu.kz/index.php/zhuzhu/article/view/493

Issue

Section

Condensed Matter Physics and Materials Science Problems. NanoScience