Investigation of high-temperature corrosion of graphite with SiC coating

Authors

  • I.E. Kenzhina IETP, Al Farabi Kazakh National University, Kazakhstan, Almaty
  • Ye.V. Chikhray IETP, Al Farabi Kazakh National University, Kazakhstan, Almaty
  • V.P. Shestakov IETP, Al Farabi Kazakh National University, Kazakhstan, Almaty
  • T.V. Kulsartov IETP, Al Farabi Kazakh National University, Kazakhstan, Almaty
  • S.K. Askerbekov IETP, Al Farabi Kazakh National University, Kazakhstan, Almaty
  • O.A. Kalikulov IETP, Al Farabi Kazakh National University, Kazakhstan, Almaty
  • T.K. Zholdybayev Institute of Nuclear Physics, Almaty, Kazakhstan

Keywords:

corrosion, graphite, SiC coatings, HTGR reactor, reaction rate

Abstract

The article describes the results of experiments on high-temperature corrosion of graphite with SiC coating. To ensure the safe operation of a high-temperature gas-cooled reactor (HTGR), it is necessary to investigate the behavior of fuel and graphite elements of its core in case of air and/or water ingress. Nowadays, the data on corrosion of numerous types of reactor graphites in oxygen, air and in water vapor is insufficient. In this work, experiments were conducted on high-temperature corrosion of IG-110 graphite (without and with SiC-coating) samples and the temperature dependences of kinetics of gas composition change in corrosion chamber with samples of graphite in temperature range from 750°C to 1400°C and at initial pressures of water vapor in the chamber 10-100 Pa were obatined. There is a significant difference in the rate of pressure change in corrosion chamber for various gases in experiments with graphite without coating at a fixed temperature. This fact states about different values of reaction rates and a complex mechanism of corrosion, which depends on processes having different constants. A qualitative analysis of the results of corrosion experiments was also carried out.

References

1. Stolz Von E. Kohlenstofftransport in den Hoch-emperaturreaktoren THTR und AVR // Report EUR-3900, THTR-44, Brown Boveri. Krupp Reaktorbau G.m.b.H. Mannheim. - 1968. — P. 99-103.
2. Pointud M. L. Influence of different Metals on Corrosion Rate of Graphite // Symposium on Basic Research at A.E.R.E. Harwell. - 1964. – 67 p.
3. Tortelli P.F. Effect of high water-vapor pressure on oxidation of SiC at 1200C // Journal of The American Ceramic Society. - 2003. -V. 86, №. 8. - P.1249-1255.
4. Burnette R. D. Studies of the Rate of Oxidation of ATJ Graphite by Steam // Proceedings of 13th Biennial Conference on Carbon. Irvine, California, July 13-22. – 1977. – P.429-430.
5. Walker P.L Gas Reactíons of Carbon // Adv. in Cat. – 1959. – V. 11. – P.133-219.
6. Peroomian M. B. OXIDE-3: A Computer Code for Analysis of HTGR Steam or Air Ingress Accidents // GA Report GA-A12493 (GA-LTR-7). - 1974.
7. Miller W. High temperature oxidation of silicon carbide // AFIT Thesis of School of Engineering in Air Force Institute of Technology. OHIO, June. - 1972. – P. 64.
8. Schlichting J. Siliziumkarbid ein oxydationfest Hochtemperaturwerkstoff // Ber. Dt. Keram. Ges. – 1979. – V.56, № 8. – P.196-200.
9. Jacobson N.S. Corrosion of Silicon-Based Ceramics in Combustion Environments // J. Am. Ceram.Soc. – 1993. – V.76. – P.3-28.
10. Zhao J. Oxidation protective behavior of SiC/Si-MoSi2 coating gor different graphite matrix // Materials Letters. – 2006. – V.60.– P. 1964-1967.
11. Колобов Н.А., Самохвалов М.М. Диффузия и окисление полупроводников. -М.: Металлургия, 1975. – 456 с.
12. Deal B. E. General Relationship for the Thermal Oxidation of Silicon // J. of Applied Physics. – 2004. – V.36, № 12. – P. 3770-3778.
13. Александров О.В. Модель термического окисления кремния на фронте объемной реакции // Физика и техника полупроводников. – 2008 – Т. 42. - №11 – С.1400-1406.

References
1. Stolz Von E. Report EUR-3900, THTR-44, Brown Boveri. Krupp Reaktorbau G.m.b.H. (Mannheim, 1968, 99-103).
2. M.L. Pointud, “Influence of different Metal on Corrosion Rate of Graphite”, Symposium on Basic Research at A.E.R.E. (Harwell, 1964).
3. P.F. Tortelli, Journal of The American Ceramic Society, 86(8), 1249-1255, (2003).
4. R.D. Burnette, Proceedings of 13th Biennial Conference on Carbon. Irvine, California, July 13-22, 429-430, (1977).
5. P.L. Walker, Adv. in Cat., 11, 133-219, (1959).
6. M.B. Peroomian, GA Report GA-A12493 (GA-LTR-7), (1974).
7. W. Miller, “High temperature oxidation of silicon carbide”, AFIT Thesis of School of Engineering in Air Force Institute of Technology. (OHIO, June, 1972, 64p.).
8. J. Schlichting, Ber. Dt. Keram. Ges., 56(8), 196-200, (1979).
9. N.S. Jacobson, J. Am. Ceram.Soc., 76, 3-28, (1993).
10. J. Zhao, Materials Letters, 60, 1964-1967, (2006).
11. N.A. Kolobov and M.M. Samohvalov, “Diffuzija i okislenie poluprovodnikov”, (Metallurgija, Moscow, 1975, 456 p.) (in russ.).
12. B. E. Deal, J. of Applied Physics, 36(12), 3770-3778, (2004).
13. O.V. Aleksandrov, Fizika i tehnika poluprovodnikov, 42(11), 1400-1406, (2008) (in russ.).

Downloads

Published

2017-10-10

Issue

Section

Condensed Matter Physics and Materials Science Problems. NanoScience