Simulation of combustion processes of liquid fuels method the level set

Authors

  • А. Askarova Al Farabi Kazakh National University, Kazakhstan, Almaty
  • S. Bolegenova Al Farabi Kazakh National University, Kazakhstan, Almaty
  • S. Bolegenova Al Farabi Kazakh National University, Kazakhstan, Almaty
  • V. Maximov Al Farabi Kazakh National University, Kazakhstan, Almaty
  • Sh. Ospanova Al Farabi Kazakh National University, Kazakhstan, Almaty
  • M. Beketayeva Al Farabi Kazakh National University, Kazakhstan, Almaty
  • A. Nugymanova Al Farabi Kazakh National University, Kazakhstan, Almaty
  • Zh. Baizhauma Al Farabi Kazakh National University, Kazakhstan, Almaty
        71 31

Keywords:

numerical modeling, heptane, combustion chamber, temperature, weight, optimum mode

Abstract

Numerical research of burning of liquid fuels is a complex challenge of thermo physics as demands the accounting of a large number of the difficult interconnected processes and the phenomena. Therefore, computing experiment becomes more and more important element of research of processes of burning and design of various devices using burning process. In this article we propose the mathematical model and the main equations describing process of burning of liquid fuels at high turbulence is stated. Research of processes of disintegration and dispersion depending on pressure and an initial lot of injection in the combustion chamber of liquid fuel is conducted: heptane. A study of the distribution of droplets of heptane the radius in the combustion chamber. Even with the same values of the distribution radius have different description in the combustion chamber. In the basic model of the combustion chamber the minimum value of the radius is 5 μm, and the maximum value is 50 microns. However, particles along the height of the combustion chamber are distributed in different ways. The obtained curves of temperature distribution in different points in time drops of heptane in the combustion chamber. The results obtained using the model stochast. On the lower part of the combustion chamber are large particles. t =0,98 ms and their temperature equal to 400K. In another moment of time the particles are apart and moving up the height of the combustion chamber. The temperature of the particles is equal to 500 K at time t = 1,49 ms.

References

1. A.S. Askarova, S.A. Bolegenova, V.Y. Maximov, A. Bekmukhamet, M. Beketayeva, and Z. Gabitova, Intern. Conf. on Future Information Engineering (FIE2014), IERI Procedia, (Beijing, Peoples R China, 2014), 252-258.

2. A.S. Askarova, V. Maximov, M. Beketayeva, and P. Safarik, J. of thermal science, 24(3), 275-282 (2015).

3. A. Askarova, S. Bolegenova, S. Bolegenova, V. Maximov, Manatbayev R, A. Yergaliyeva, Z. Gabitova, A. Maxutkhanova, Zh. Shortanbayeva, A. Boranbayeva, and K. Berdikhan, Bulgarian Chemical Communications, Special Is. E, 236-241 (2016).

4. A. Askarova, S. Bolegenova, N. Mazhrenova, Symbat Bolegenova, R. Manatbayev, I. Berezovskaya, V. Maximov, Sh. Ospanova, A. Nugymanova, and Zh. Shortanbayeva, Bulgarian Chemical Communications, Special Iss. E, 229-235 (2016).

5. A.S. Askarova, E.I. Heierle, S.A. Bolegenova, V.Ju. Maximov, S.A. Bolegenova, R. Manatbayev, M.T. Beketaeva, and A.B. Ergalieva, Bulgarian Chemical Communications, Special Iss. E, 260-265 (2016).

6. A.S. Askarova, S.A. Bolegenova, Symbat Bolegenova, V.Yu. Maximov, R. Manatbayev, Zh.K. Shortanbayeva, A.M. Maksutkhanova, A.N. Aldiyarova, and A.E. Boranbayeva, Bulgarian Chemical Communications, Special Iss. E, 272-277 (2016).

7. R. Leithner, A. Askarova, S. Bolegenova, S. Bolegenova, V. Maximov, Sh. Ospanova, A. Ergalieva, A. Nugymanova, and M. Beketayeva, MATEC Web of Conferences, 5p, (2016).
https://doi.org/10.1051/matecconf/20167606001.

8. A. Askarova, S. Bolegenova, S. Bolegenova, A. Boranbayeva, and K. Berdikhan, International Journal of Applied Engineering Research 11 (8), 5511-5515 (2016).

9. A. Askarova, S. Bolegenova et al. Intern. Journal of Mechanics 10, 320-325 (2016).

10. A. Askarova, S. Bolegenova, V. Maximov et al., International Journal of Mechanics, 10, 349-355 (2016).

11. M.C. Ramaswamy and M.C. Cupta, Archiwum Termodinamiki i Spalania 18, No3, 405-418 (1979).

12. E. Moses, A.L. Yarin and P. Bar-Yoseph Combust. Flame 101, No3, 239-261 (1995).

13. M. Gorokhovski, Atomization and Sprays 1, No 5, 169-176 (2001).

14. S.V. Apte, M. Gorokhovski, and P.Moin, International Journal of Multiphase Flow 29, No9, 1503-1522 (2003).

15. I. Vinkovic, C. Aguirre, S. Simoëns, and M. Gorokhovski, International journal of multiphase flow 32, No3, 344-364 (2006).

16. M.A. Gorokhovski and V.L. Saveliev, Physics of Fluids 5 (1), 184-192 (2003).

17. D. Wilcox, Turbulence Modeling for CFD, (La Canada: DCW Industries, Inc, 1993), 460 p.

18. J.O. Hinze Turbulence, (New York: McGraw-Hill Publishing Co, 1975), 404 p.

19. R. Leithner and H.Müller, Second M.I.T. Conference on Computational Fluid and Solid Mechanics, (Cambridge, 2003), 172 p.

20. V. Sabel’nikov, M. Gorokhovski, and N. Baricault, Combustion Theory and Modelling 10, No1, 155-169 (2006).

21. L. Jianping, U. Tatsuo, K. Osami, L. Zhiming, and L.Yulu, International Journal of Heat and Fluid Flow 28, 871-881 (2007).

22. J.E. Fackrell and A.G. Robins, J. Fluid Mech. 117, 1-26 (1982).

Downloads

How to Cite

Askarova А., Bolegenova, S., Bolegenova, S., Maximov, V., Ospanova, S., Beketayeva, M., Nugymanova, A., & Baizhauma, Z. (2017). Simulation of combustion processes of liquid fuels method the level set. Recent Contributions to Physics (Rec.Contr.Phys.), 63(4), 4–13. Retrieved from https://bph.kaznu.kz/index.php/zhuzhu/article/view/536

Issue

Section

Thermal Physics and Theoretical Thermal Engineering

Most read articles by the same author(s)