Electronic properties of As2S3 thin films

Authors

  • B.Sh. Issabayev Al-Farabi Kazakh National University, Kazakstan, Almaty
  • N.Zh. Almassov Kazakh National Research Technical University after K.I. Satpaev, Kazakhstan, Almaty
  • A.A. Aliakbarova Kazakh National Research Technical University after K.I. Satpaev, Kazakhstan, Almaty
  • U.K. Djolmasheva Kazakh National Research Technical University after K.I. Satpaev, Kazakhstan, Almaty
        107 40

Keywords:

size effect, thin amorphous halkogenidny films, electrical conductivity, optical absorption, optical forbidden region

Abstract

In work as method of thermal evaporation in a vacuum thin amorphous films of  As2S3 are received. Temperature dependences of conductivity of films are investigated. It is established that the temperature dependence of conductivity σ (T) of films, in the studied interval of temperatures 300 – 440 K has semiconductor character and is well described by exponential dependence of σ = Сexp(-Eσ/kT). From calculations of value of C, it is revealed, according to Mott's theory that with reduction of thickness of films, the conductivity mechanism on the delocalized states is replaced with the hopping mechanism of conductivity on the localized states in "tails" of the resolved  zones, and then on the conductivity mechanism by jumps of carriers of a charge on the localized states near Fermi's level. Activation energy of conductivity of films makes about a half of optical band gap. Spectra of optical transmission of films are investigated. It is established that they have the spectral dependence of the transmission coefficient T, typical for noncrystaline semiconductors in the region of the optical transmission edge, consisting of the region of interband transitions, the exponential region and the region associated with absorption at various structural inhomogeneities. It is supposed that the exponential absorption edge is caused by electronic transitions between the localized states in tails of the bands, and density of states exponential decreases with energy.

References

1. Applications of Chalcogenides: S, Se, and Te. Ed. G.K. Ahluwalia (Springer Series in Material Science, 2017), 234 p.

2. K. Tanaka, K. Shimakawa, Amorphous Chalcogenide Semiconductors and Related Materials, (Springer Science, 2011), 239 p.

3. Tan, Cao, Wu, He, Yang, Zhang, Chen, Zhao, Han, Nam, Sindoro, and Zhang, Chemical Reviews, 117 (9), 6225–6331, (2017).

4. K. Sugawara, Y. Nakata, R. Shimizu, P. Han, T. Hitosugi, T. Sato, and T. Takahashi, ACS Nano, 10 (1), 1341–1345, (2016). DOI: 10.1021/acsnano.5b06727.

5. P. Hosseini, C.D. Wright, and H. Bhaskaran, Nature, 511(7508), 206, (2014).

6. V. Ilchevaa, P. Petkova, V. Boevb, and T. Petkova, Physics Procedia, 10th Inter, Conf, on Solid State Chemistry, Pardubice, Czech Republic, 67-74, (2013).

7. T. Hristova-Vasileva, I. Bineva, A. Dinescu, M. Danila, and D. Arsova, J. of Physics: Conference Series, 794 (1), 012015, (2017). DOI:10.1088/1742-6596/794/1/012015

8. Dinesh C. Sati, R. Kumar, R.M. Mehra, H. Jain, and Ashtosh Ganjooless, J. of Applied Physics 105, 123105 (2009). DOI.org/10.1063/1.3151804

9. R.M. Bryce, H.T. Nguyen, P. Nakeeran, R.G. DeCorby, P.K. Dwivedi, C.J. Haugen, and J.N. McMullin, J. of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 22, 1044, (2004).

10. E. Färma, M.J. Heikkilä, and M. Vehkamäki, J. of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 35, 01B114, (2017).

11. J.M.P. Almeida, E.C. Barbano, C.B. Arnold, L.Misoguti, and C.R. Mendonça, Optical Materials Express, 7 (1), 93-99, (2017). doi.org/10.1364/OME.7.000093

12. S. Takenobu and H. Hideo, J. of Applied Physics, 92, 4, 1821-1824, (2002).

13. Yu.Yu. Neimet, I.P. Studenyak, M.Yu. Buchuk, R. Bohdan, S. Kökényesi, L. Daróci, and P. Nemec, Semiconductor Physics, Quantum Electronics & Optoelectronics, 18, 4, 385-390, (2015).

14. N. Korobova, N. Almasov, O. Prikhodko, S. Timoshenkov, and K. Tsendin Proc. of Materials Science and Technology (Pittsburgh, Pennsylvania, USA, MS&T 2014, 12-16 October, 2014), 253 – 258.

15. O. Prikhodko, N. Almasov, S. Dyussembayev, S. Maksimova, V. Ushanov, K. Tsendin, and S. Nesterov, Chalcogenide Letters, 10 (12), 519 – 523, (2013).

16. N. Korobova, N. Almasov, O. Prikhodko, S. Timoshenkov, and K. Tsendin, AIP Conference Proceedings, 1624, 69-74 (2014). doi.org/10.1063/1.4900459.

17. N.Zh. Almasov, O.Yu. Prikhodko, and K.D. Tsendin, Semiconductors, 46 (10), 1319-1321, (2012).

18. Elektronnyye yavleniya v khal'kogenidnykh stekloobraznykh poluprovodnikakh. Pod. red. K.D. Tsendina, (SPb.: Nauka, 1996), 486 p. (in Russ).

19. A.M. Andriesh, Fizika i tekhnika poluprovodnikov, 32 (8), 970-975, (1998).

20. N. Almasov, N. Bogoslovskiy, N. Korobova, S. Kozyukhin, S. Fefelov, L. Kazakova, S. Jakovlev, K. Tsendin, and N. Guseinov, J. Non-Cryst. Solids, 358, 3299–3303, (2012).

21. A. Popovich, Komponenty i tekhnologii, 103, 52-54, (2010). (in Russ).

22. C.A. Kozyukhin, A.A. Sherchenkov, V.M. Novotortsev, and S.P. Timoshenkov, Nanoelektronika, 6 (3-4), 73-81, (2011).

23. M.A. Paesler, D.A. Baker, G. Lucovsky, P.C. Taylor, and J.S.Washington, J. Optoelectronics and Advanced Materials, 9, (10), 2996−3001, (2007).

24. A.V. Kolobov, P. Fons, A.I. Frenkel, Ankudinov A.I., Tominaga J., and T. Uruga, NatureMater, 3, 703−708, (2004).

25. Neserebryannyye fotograficheskiye protsessy. Pod red. A.L. Kartuzhanskogo (L.: Khimiya, 1984), 376 p. (in Russ).

26. S.I. Nesterov, Sb. trudov VII Mezhdunar. konf. po amorfnym i mikrokristallicheskim poluprovodnikam, (SPb., 2010), pp.115-116. (in Russ).

27. I. Mott and E. Devis Elektronnyye protsessy v nekristallicheskikh veshchestvakh, (Moscow: Mir, 1982), 560 p. (in Russ).

28. Amorfnyy kremniy i rodstvennyye materialy/pod red. KH.Fritsshe, (Moscow: Mir, 1991), 544 p. (in Russ).

29. A. Fel'ts, Amorfnyye i stekloobraznyye neorganicheskiye tverdyye tela, (Moscow: Mir, 1987), 403 p.

Downloads

How to Cite

Issabayev, B., Almassov, N., Aliakbarova, A., & Djolmasheva, U. (2018). Electronic properties of As2S3 thin films. Recent Contributions to Physics (Rec.Contr.Phys.), 64(1), 32–38. Retrieved from https://bph.kaznu.kz/index.php/zhuzhu/article/view/611

Issue

Section

Condensed Matter Physics and Materials Science Problems. NanoScience