Heat erosion of the graphite target under effects of intensive pulse plasma flow

Authors

  • A.U. Utegenov IETP, Al-Farabi Kazakh National University, Kazakhstan, Almaty
  • A.B. Tazhen IETP, Al-Farabi Kazakh National University, Kazakhstan, Almaty
  • ZH. Rayymkhanov IETP, Al-Farabi Kazakh National University, Kazakhstan, Almaty
  • A.A. Kambarov IETP, Al-Farabi Kazakh National University, Kazakhstan, Almaty
        100 57

Keywords:

pulsed plasma accelerator, ITER, candidate material

Abstract

In this work the results of an experimental investigation of the interaction of a pulsed plasma flow with a candidate material – graphite plates of the first wall of ITER are presented. To generate a pulsed plasma flow, as well as to simulate and experimental modeling the breakdown of a plasma flow on a wall, an experimental setup pulsed plasma accelerator was used in this work. Graphite plates were irradiated with 25 pulses of plasma flow. On the basis of electron-force microscopy, SEM images of graphite samples were obtained after exposure to a series of pulsed plasma flow in two different discharge voltages of 5 kV and 11 kV. The Raman spectrum of the initial samples are also shown, and optical diagnostics of the surfaces is performed. According to the Raman spectrum, it was found that samples of graphite in both cases have a defective structure. The experiment also found that copper films are formed on the surface of graphite plates, this is mainly due to the deposition of copper molecules, ejected from the surface of the electrodes during ignition of the arc discharge in the interelectrode space. The results are well studied, analyzed and compared with the results taken in the ITER.

References

1 ITER Physics Basis Editors. Chapter 1: Overview and summary // Nuclear Fusion. 39, 2137 (1999).

2 J.C. Flanagan, M. Sertoli, M. Bacharis et al., Plasma physics and controlled fusion. 57, 014037 (2015).

3 G. Federici, C.H. Skinner et al. Nuclear Fusion. 41, 1967-1979 (2001).

4 V.I. Crauz., Yu.V. Martinenko, N. Yu. Svechnikov, V.P. Smirnov, V.G. Stankevich, L.N. Khimchenko, Uspekh. Phys. Nauk.180, 1055-1080 (2010).

5 L. Vignitchouk, P. Tolias and S. Ratynskaia, Plasma Physics and Controlled Fusion. 56, 095005 (2014).

6 S. Ratynskaia, H. Bergsaker, B. Emmoth, A. Litnovsky, A. Kreter and V. Philipps, Nucl. Fusion. 49, 122001 (2009).

7 A. Yu. Pigarov, S. I. Krasheninnikov, T.K. Soboleva, T.D. Rognlien, Physics of Plasmas. 12, 122508 (2005).

8 V. Sizyuk and A. Hassanein, Nuclear Fusion. 53, 073023 (2013).

9 A.U. Utegenov, A.B. Tazhen, M.K. Dosbolayev, T.S. Ramazanov, 21st Intern. symposium on Heavy Ion Inertial Fusion, Book of abstracts. 53 (2016).

10 V.I. Krauz, Yu.V. Martynenko, N.Yu. Sevchinkoav, V.P. Smirnov, V.G. Stankevich, L.N. Khimchenko, UFN, 180, 1055-1080 (2010).

11 H-W. Bartels et al. Safety, Environment and Health Group, Garching ITER Joint Central Team. 41, 11-14 (2000).

12 P.K. Shukla and A.A. Mamun. Series in Plasma Physics. – London: Institute of Physics Publishing, 44, 123-165 (2002).

13 N.S. Klimov, V.L. Podkovyrov, A.M. Zhitluhin, N.I. Arkhipov, V.M. Safronov., V.A. Barsuk, I.M. Poznyak, A. Loarte, M. Merola, J. Linke, Nuclear Physics and Engineering, 1, 210-219 (2010).

14 J.J. Bevelacqua Health physics considerations for the ITER // International nuclear safety journal, 3, 25-52 (2014).

15 Yu.V. Martynenko, M.Yu. Nagel, Thermonuclear fusion. 389, 65-72 (2009).

16 Tong L., Hou L., Cao X. Journal of Fusion Energy, 34, 1-8 (2015).

17 M.K. Dosbolayev, A.U. Utegenov, A.B. Tazhen, T.S. Ramazanov, Laser and Particle Beams. 35, 741-749 (2017).

18 M.K. Dosbolayev, A.U. Utegenov, A.B. Tazhen, T.S. Ramazanov, M.T. Gabdullin, News of the Natnl. Acad.Sci. RK. 6, 59–66 (2016).

19 А.B. Tazhen, А.U. Utegenov, M.K. Dosbolayev, Т.S. Ramazanov, М.I. Kaikanov, А.V., J. PEOS. 2, 40-44 (2016).

20 A.B. Tazhen, M.K. Dosbolayev, T.S. Ramazanov, Nuclear and Radiation Physics, Book of abstracts, 84-85 (2015).

21 A.B. Tazhen, M.K. Dosbolayev, Zh. Raiymkhanov, T.S. Ramazanov, IX Intern. Conf. Plasma Physics and Plasma Technology2 Book of abstracts2 304-307 (2018).

22 A.B. Tazhen, M.K. Dosbolayev, A.U. Utegenov, Zh.R. Raiymkhanov, T.S. Ramazanov, ESCAMPIG XXIV Proc., 146-147 (2018).

23 M.K. Dosbolayev, Zh. Raiymkhanov, A.B. Tazhen, A.U. Utegenov, T.S. Ramazanov, 15th Dusty Plasma Workshop, 59 (2018).

24 M.K. Dosbolayev, Zh. Raiymkhanov, A.B. Tazhen, A.U. Utegenov, T.S. Ramazanov, XII-th Intern. Conf. Ion Implantation and Other Applications of Ions and Electrons, Book of Abstracts, 82 (2018).

25 A.B. Tazhen, A.Kh. Suleymenova, M.K. Dosbolayev, T.S. Ramazanov, J. PEOS. 19, 5­10 (2017).

Downloads

How to Cite

Utegenov, A., Tazhen, A., Rayymkhanov, Z., & Kambarov, A. (2018). Heat erosion of the graphite target under effects of intensive pulse plasma flow. Recent Contributions to Physics (Rec.Contr.Phys.), 67(4), 33–40. Retrieved from https://bph.kaznu.kz/index.php/zhuzhu/article/view/657