SPECTROSCOPIC FACTOR FROM 6Li(3He,d)7Be AND ASTROPHYSICAL FACTOR FOR 6Li(p,γ)7Be

Authors

  • N. Burtebayev Institute of Nuclear Physics of National Nuclear Center, Almaty, Kazakhstan
  • A. Amar Al-Farabi Kazakh National University, Kazakstan, Almaty
  • S.B. Sakuta Russian Research Center “Kurchatov institute”, Moscow, Russia
  • S.V. Artemov Institute of Nuclear Physics, Tashkent, Uzbekistan
  • Zh. Kerimkulov Institute of Nuclear Physics of National Nuclear Center, Almaty, Kazakhstan

Keywords:

spectroscopic factor, Fresco program, astrophysical factor

Abstract

Angular distributions of differential cross sections have been measured for elastic, inelastic scattering and the (3He,d) reaction on 6Li nucleus at the 34 MeV 3He energy. Elastic scattering data at 34, 50, 60, and 72 MeV have been reanalyzed with optical model potentials taking into account elastic triton transfer mechanism and spectroscopic factor of 6Li as t+3He was re-extracted using Fresco program. Parameters for real part of potential have been also calculated microscopically with double-folding model. The differential cross sections for proton stripping to the 7Be ground and first excited states have been analyzed by CRC methods at 34 MeV. The effect of triton exchange on proton transfer reaction 6Li(3He,d)7Be for both ground and excited state is discussed. Spectroscopic factors for 7Be as p6Li configuration have been obtained from
the experimental data. New measurements of the 6Li(p,γ)7Be reaction γ-ray angular distributions have been done at beam energies of Ep, lab. = 387, 690, 984 and 1283 keV for the γ-ray transitions to the ground and first excited (1/2-, 429 keV) states in 7Be. Our calculations of the cross section of the 6Li (p, γ)7Be reaction was carried within the framework of the direct capture in the potential model using Fresco program. We extracted both of spectroscopic factors of 7Be and astrophysical factor 6Li+p→7Be+γ from experimental data.

References

1. P.E. Hodgson, The Optical Model of Elastic Scattering (Clarendon, Oxford, 1963).

2. N. Burtbayev, Mrarzhan Nasurralla, Maulan Nasurralla, Zh.K. Kerimkulov, and S.B. Sakuta, American institute of Physics (AIP) Conference Proceeding, 203-208 (2008).

3. J. Ian Thompson and Filomena M. Nunes, Nuclear Reactions for Astrophysics: Principles, Calculation and Applications of Low-Energy Reactions (Cambridge, Cambridge University Press, 2009).

4. N. Burtbayev, Mrarzhan Nasurralla, Maulan Nasurralla, Zh.K. Kerimkulov, and S.B. Sakuta, American institute of Physics (AIP) Conference Proceeding, 203-208 ( 2008).

5. S.B. Dubovichenko, N. Burtebaev, D.M. Zazulin, Zh.K. Kerimkulov, and A.S.A. Amar, Physics of Atomic Nuclei, 74, 7, 984-1000 (2011).

6. J.T. Huang, C.A. Bertulani, and V. Guimaraes, Atomic Data and Nuclear Data Tables 96, 824-847 (2010).

7. S. Angulo et al., Nucl. Phys. A 656, 3 (1999).

8. Z.E.Switkowski, J.C.P. Heggie, D L. Kennedy, D.G. Sargood, F.C. Barker, R.H. Spear, Nucl. Phys. A, 331, 50-60 (1979) .

9. F.C. Barker, Aust. J. Phys. 33, 159 (1980) .

10. K. Arai, D. Baye, P. Descouvement, Nucl. Phys. A 699, 963-975 (2002).

11. R.M. Prior, M.C. Spraker, A.M. Amthor, K.J. Keeter, S.O. Nelson, A. Sabourov, K. Sabourov, A. Tonchev, M. Ahmed, J. H. Kelley, D. R. Tilley, H. R. Weller, and H. M. Hofmann, Phys. Rev. C 70, 055801 (2004).

12. F.E. Cecil, D. Ferg, H. Liu, J.C. Scorby, J.A. McNeil, and P.D. Kunz, Nucl. Phys. A539, 75 (1992).

13. S.B. Dubovichinko, N. Burtebayev, D.M. Zazulin, Zh.K. Kerimkulov, A. Amar, Yad. Physika, 74 (7), 1013-1028 (2011). (in Russ)

14 A. Amar, Sh. Hamada, N. Burtebayev, N. Amangeldy, International Journal of Modern Physics E, 20 (4) 980–986 (2011).

14. Fresco, I. J. Thomson, Department of physics, University of Surrey, Guildford GU2 7XH, England, version FRES 2.0, July 2006.

15. V.N. Bragin, N.T. Burtebaev, A.D. Duisebaev, G.N. Ivanov, S.B. Sakuta, V.I. Chuev, and L. V. Chulkov, Yad. Fiz. 44, 312 (1986). (in Russ)

16. T. Sinha, Subinit Roy, and C. Samanata, Physical Review C, 47 (6), 2294-2297 (1993).

17. P.J. Simmonds, N.M. Clarke, K.I. Pearce, R.J. Griffiths, B. Stanley, S. Roman, A. Farooq, G. Rai, M. C. Mannion, and C. A. Ogilvie, J. Phys. G: Nucl. Part. Phys. 15, 353-370 (1989).

18. J. Cook and R. J. Griffiths, Nucl. Phys. A 366, 27 (1981).

19. L. R. Suelezle, M. R. Yearian, Hall Crannel, Phys. Review 162 (4), 992 (1967).

20. J. Cook, Computer Physics Communications, 25 (2), 125-139 (1982).

21. P.Pereslavtsev et al., Nucl. Instruments and methods in Nuclear Phys. Research B 266, 3501-3512 (2008).

22. C.M. Perey and F.G. Perey, At Data Nucl. Data Tables 17, 1 (1976).

23. A.K. Basak, O. Karban, S. Roman, G.C. Morrison, C.O. Blyth and J. M. Nelson Nuclear physics A 368, (1), 93-107 (1981).

24. A.K. Basak, O. Karban, S. Roman, G.C. Morrison, C.O. Blyth and J.M. Nelson, Nuclear physics A 368, 74 (1981).

25. H. Ludecke, Tan Wan-Tjin, H. Werner and J. Zimmerer, Nuclear Physics, A109, 676-688 (1968).

26. J.R. Patterson, J.M. Poate, B.A. Robson, E.W. Titterton, Proc. Phys. Soc. 90, 577 (1967).

27. D.Y. Pang, R.L. Varner, and R. Wolski, Phys. Rev. C 79, 024615 (2009).

28. D.R. Tilley, C.M. Cheves, J.L. Godwin, G.M. Hale, H.M. Hofmann, J.H. Kelley, C.G. Sheu and H.R. Weller , Nucl. Phys. A708 (2002).

29. V.I. Chuev, V.V. Davidov, B.G. Novatskii, A.A. Ogloblin, S.B. Sakuta, D.N. Stepanov, Journal De Pgysique, Colleque c6, Vol. 32, 163 (1971).

30. S. Cohen and D.Kurath. Nucl. Phys. A101, 1 (1967).

31. J.D. King, R.E. Azuma, J.B. Vise, J. Görres, C. Rolfs, H.P. Trautvetter, A.E. Vlieks, Nucl. Phys. A, Vol.567, 354-376 (1994).

32. R.Ostojic, K.Subotic, B.Stepancic, Nuovo Cim. A76, 73-82 (1983).

33. B.A. Watson, P.P. Singh, and R.E. Segel, Phys. Rev. 182 (4), 977-989 (1969).

34. W.A. Fowler, G.R. Caughlan, and B.A. Zimmerman, Ann. Rev. Astron. Astrophys. 13, 69 (1975).

35. E.E. Salpeter, Phys. Rev. 88, 547 (1952).

Downloads

Published

2011-12-20

Issue

Section

Theoretical Physics. Nuclear and Elementary Particle Physics. Astrophysics