Recent developments in the synthesis of nanomaterials in the combustion regime

Authors

  • Z.A. Mansurov Institute of burning problems of al-Farabi KazNU, Almaty, Kazakhstan
        32 26

Keywords:

PAH, fullerenes, hydrocarbon flames, carbon nanotubes, nickel oxide nanoparticles

Abstract

Proposed scheme of conversion of fuel with the formation of fullerenes and carbon black taking into account the pressure in the fuel-rich flames. It is shown that the formation of fullerenes is important to the corresponding spatial orientation PAH, possible at low pressures.

Investigated the influence of an electric discharge on the efficiency of output of fullerenes in premixed benzene / oxygen / argon flame. It is established that the electrons emitted from the needle electrode, distributed in the volume of a cone, and to a lesser degree of influence on the outer edges of the flame, and the electrons emitted from the annular electrode is treated not only the inner region, but also the edge of the flame, which creates conditions for growth fullerenes. Studied the formation of hydrophobic soot in the diffusion of propane – oxygen flame on the silicon and nickel substrates at atmospheric pressure and defined conditions for the formation of superhydrophobic carbon black on a nickel substrate from exposure to electric fields. It is established that the imposition of an electric field, regardless of the substrate material, deposition of soot narrows the field to the substrate, and a diameter of 2.5 – 3 cm from the center formed a diesel particulate superhydrophobic surface with wetting angle from above 1700. Synthesis of carbon nanotubes carried out on microwave plasma-chemical reactor. The resulting nanotubes were studied by electron microscope and SEM – images of films of carbon nanotubes shows that the nanotubes are randomly distributed on the substrate and disoriented. It was found that the growth rate depends on the amount of methane suppressed. Studied the photovoltaic properties of solar cells coated with nickel oxide nanoparticles synthesized in counterflow propane flame. Nanoparticles of nickel oxides contribute to the efficient absorption of light energy. Surfacing on the surface of a silicon solar cell of nickel oxide nanoparticles led to an increase in the output circuit voltage up to 4-7%, short circuit current up to 20-28%, which together led to an increase in solar cell efficiency by 2-3%.

References

1 Ксандопуло Г.И., Дубинин В.В. Химия газофазного горения. – М.: Химия, 1987.

2 Мержанов А.Г. Процессы горения и взрыва в физикохимии и технологии неорганиче-ских материалов // Успехи химии. – 2003. – Т.72, №4. – С. 323-345.

3 Drexler K.E. Nanosystems: molecular machinery, manufacturing and computation / New York: John Wiley & Sons, Inc., 1992.

4 Нанотехнологии. Наноматериалы. Наносистемная техника. Мировые достижения / Под ред. П.П. Мальцева. – М.: Техносфера, 2008.

5 Smith W.F., Hashemi J.. Foundations of materials science and engineering / 5th Edition McGraw-Hill, 2010.

6 Oberlin A., Endo M., Koyama T. Filamentous growth of carbon through benzene decomposition // Cryst. Growth. – 1976. – Vol. 32, № 3. – P. 335-349.

7 Iijima S. Helical microtubules of graphitic carbon // Nature. – 1991. – Vol. 354. – P. 56-58.

8 Endo M., Strano M.S. and Ajayan P.M. Potential applications of carbon nanotubes / Jorio, Ado; Dresselhaus, Gene; Dresselhaus, Mildred S. (Eds.) Carbon nanotubes // Topics in Applied Physics. – 2008. – Vol. 111. – P. 13-61.

9 Mansurov Z.A. Some applications of nanocarbon materials for novel devices / R. Gross et al (eds.), Nonoscale-Devices – Fundamentals, Springer, 2006. – P. 355-368.

10 Kroto H.W., Health J.R., O`Brien S.C., Curl R.F., and Smalley R.F. C60: Buckminsterfullerene // Nature. – 1985. – Vol. 318, №. 6042. – P. 162-164.

11 Howard J.B. Fullerenes formation in flames // Symposium (International) on Combustion. – 1992. – Vol. 24, № 1. – P. 933-946.

12 Фуллерены: Учебное пособие / Л.Н.Сидоров, М.А.Юровская и др. – М.: Издательство «Экзамен», 2005. – 688 с.

13 Jäger C., Huisken F., Lamas Jansa I., Henning Th. Formation of polycyclic aromatic hydrocar-bons and carbonaceous solids in gas-phase condensation experiments // The Astrophysical journal. – 2009. – № 696. – Р. 706-712.

14 Ahrens J., Bachmann M., Baum Th., Griesheimer J., Kovacs R., Weilmünster P., Homann K.-H. Fullerenes and their ions in hydrocarbon flames // Intern. J. of Mass Spectrometry and Ion Processes. –1994. –Vol. 138. – P. 133-148.

15 Grieco W.J., Lafleur A.L., Swallow K.C., et al. Fullerenes and PAH in low-pressure premixed benzene/oxygen flames // Symposium (International) on Combustion. – 1998. – Vol. 27, № 2. – P. 1669-1675.

16 Mansurov Z.A., Prikhodko N.G., Mashan T.T., Lesbaev B.T. The study of influence of electric field on soot formation at low pressure // Химическая физика. – 2006. – Т. 25, № 10. – С. 18-22.

17 Мансуров З.А. Образование сажи полициклических ароматических углеводородов, фуллеренов и углеродных нанотрубок при горении углеводорода // Инженерно-физический журнал. – 2011. – Т. 84, № 1. – С. 116 – 149.

18 Bachman M., Wiese W., Homann K.-H. Thermal and chemical influences on the soot mass growth // Symposium (International) on Combustion. – 1994. – V. 25, № 1. – P. 635-643.

19 Приходько Н.Г. Особенности образования фуллеренов и нанотрубок при горении угле-водородов в электрическом поле: Дис. … д-ра хим. Наук / КазНУ им. аль-Фараби. – Алматы, 2010.

20 Нажипкызы М., Мансуров З.А., Пури И.К., Шабанова Т.А., Цыганова И.А. Получение супергидрофобной углеродной поверхности при горении пропана // Нефть и газ. – 2010. – №5 (59) . – С. 27-33.

21 Levesque A., Binh V.T., Semet V., Guillot D., Filit R.Y., Brookes M.D. et al. Mono disperse carbon nanopearls an a foam-like arrangement: a new carbon nano-compound for cold cathodes // Thin Solid Folms. – 2004. – Vol. 308-14. – P.464-465.

22 El-Shazly M. Duraia, Mansurov Z.A. and Tokmoldin S.Zh. Preparation of carbon nanotubes with different morphology by microwave plasma enhanced chemical vapour deposition // Phys. Status Solidi C 7. – 2010. - №. 3–4. – P.1222– 1226. / DOI 10.1002/pssc.200982962

23 Mansurov Z.A. Auyelkhankyzy M., Lesbayev B.T., Chenchik D.I., Dikhanbayev K.K., Prikhodko N.G., Taurbayev T.I., Saveliev A.V. Increase of the power of solar elements based on nano-particles of nickel oxides synthesized in flame // Advanced Materialials Research. - 2012. - Vol. 486. – Р.140-144.

24 Nakayama K, Tanabe K, Atwater HA. Plasmonic nanoparticle enhanced light absorption in GaAs solar cells // Appl Phys Lett. – 2008. – Vol.93. – P.121904.

25 Mokkapati S, Beck FJ, Polman A, Catchpole KR. Designing periodic arrays of metal nanopar-ticles for light-trapping applications in solar cells // Appl Phys Lett. – 2009. - Vol.95. - P.053115.

26 Kuznetsov I.A., Greenfield M.J., Mehta Y.U., Merchan-Merchan W., Salkar G., Saveliev A.V., Increasing the solar cell power output by coating with transition metal-oxide nanorods // Applied Energy. - 2011. – Vol. 88. – P.4218–4221.

Downloads

Published

2012-09-22

Issue

Section

Condensed Matter Physics and Materials Science Problems. NanoScience

Most read articles by the same author(s)