Information entropy of the inhomogeneous dynamical systems

Authors

  • Z.Zh. Zhanabaev IETP, Al-Farabi Kazakh National University, Kazakhstan, Almaty
  • S.N. Akhtanov IETP, Al Farabi Kazakh National University, Kazakhstan, Almaty
        35 50

Keywords:

bifurcation, maps, chaotic oscillations,the degree of homogeneity, entropy

Abstract

In the present paper describe a new method for calculation of entropy with regard of degree of homogeneity of the two-dimensional set. The urgency of the work: application of these methods for analysis of dynamic systems. We need to consider the relationship between entropy and order parameter of a dynamical system.

For this purpose, we used the expression for evolution of order parameter of a dynamical system, whichis a determining variable and for the description of the bifurcation regimes. This parameter was introduced earlier (Zhanabaev Z. Zh., 2007) in the form of the generalized metric characteristic.

Non-additive information entropy S of two-dimensional set which is the phase portrait of timerealization was defined. Non-additivity of entropy exists due to homogeneity of q. This parameter is defined as a statistical measure of deviation ofTsallisfrom the Gibbs statistics. For q = 1, entropy is an additive value.Tsallis entropy coincides with Renyi entropy.

Dependence of the non-additive entropy on evolution of the order parameter for dynamical systems of different types was shown. Evolution of fractal mapping implements asymmetric bifurcations of the type «gluing» and chaos whichsatisfies the entropy criteria of self-organization 0,567 <S <0.806, where S is a value of Kolmogorov -Sinai entropy. These self-affine and self-similar criteria have been established by (ZhanabaevZ. Zh., 1996) previously.

References

1. DanilevichYa. B., Kovalenko A. N., Nosyrev S. P., Irregularity of entropy processes in the body as an indicator of functional stability //Doklady Biological Sciences, 2009, Vol. 429, p. 490. (in Russ)

2. Klimontovich, Yu.L.Entropiya i informatsyaotkritikh system // Uspekhi fizicheskikh nauk, 1999, vol. 169, no. 4, pp. 443–452. (in Russ)

3. Pardalos P. M., Sackellares J. Ch., et. al., Statistiсal information approaches for the modelling of the epileptic brain // Vol. 43, Issue 1, 28 May 2003, p. 79–108. (in Russ)

4. Zhanabaev Z. Zh. Kvazikanonicheskoe raspredelenie Gibbsa i masshtabnayai nvariantnost’ khaoticheskikh system // Materiali 5-oimejdunarodnoikonferentsii. “KhaosIstrukturavnelineinikhsistemakh”, 15-17 iunya, 2006. Astana. Ch.1. – s.15-23. (in Russ)

5. Zhanabaev Z. Zh. Obobshchennaya metricheskaya kharakteristika dinamicheskogo khaosa // Materialy VIII Mezhdunarodnoi shkoly “Khaoticheskie avtokolebanya i obrazovanie struktur ” – Saratov, 2007. s. 67-68 (in Russ)

6. Zhanabaev Z. Zh. аnd Akhtanov S. N., New method of investigating of bifurcation regimes by use of realizations from a dynamical system// Vestnik KazNU, seriya fizicheskaya. - №1(44)2013. (in Russ)

7. Glending P. Stability, instability and chaos. – Cambridge University Press, 2001. 388 p.

8. D.V.Lyubimov, M.A. Zaks, Two mechanisms of the transition to chaos in finite – dimensional model of convection // Physica 9D (1983) 52-64.

9. Zhanabaev Z.Zh. аnd Akhtanov S.N., Universal’noe otobrazhenie peremezhaemosti // Vestnik KazNU, seriya fizicheskaya № 2 (37) 2011, s. 15-25 (in Russ)

10. Nikolai F. Rulkov, Modeling of spiking-bursting neural behavior using two-dimensional map // Physical Review E, V 65,10 April 2002.

Downloads

Published

2013-06-17

Issue

Section

Nonlinear Physics. Radiophysics

Most read articles by the same author(s)