On the problem of the existence of a supercooled liquid phase of cryovacuum ethanol condensates

Authors

  • A. Aldiyarov Al-Farabi Kazakh National University, Kazakstan, Almaty
  • S. Kadylbek Al-Farabi Kazakh National University, Kazakstan, Almaty

Abstract

Our previous IR-spectrometry and thermodesorption studies of thin films of cryovacuum ethanol condensates and comparison of these data with the results obtained in works of some groups have allowed us to make several conclusions relative to temperature ranges of existence of low-temperature states of ethanol. Newly acquired experimental data indicate that the cryovacuum condensates of ethanol formed at temperatures considerably below the glass transition temperatureT g ≈ 98 K pass through the state that can be characterized as a supercooled liquid phase in the course of subsequent thermally stimulated transformations. The temperature range of the solid-liquid transformation (97–100 K) agrees well with the data of researchers who studied the ethanol samples obtained by the vitrification from the liquid phase. The study was conducted at low temperature in a universal IR research - spetrofotometre. Treated samples when the temperature changes from 16K to 120K. When cryocondensation gas pressure on mercury was P = 5 × 10-5 mm.Hg. Spktra infrared range was from 400 cm-1 to 4200 cm-1.

References

1 Grant E.H., Buchanan T.J., Cook H.F. Deflections of plates on elastic foundation // J. Chem. Phys., 1957. № 6, pp 156-175.

2 Reid C. Viscoelastic properties of ice // J. Chem. Phys. 1959. № 2, pp 182-190.

3 A. Aldiyarov, M. Aryutkina, A. Drobyshev, M. Kaikanov, V. Kurnosov, Investigation of dynamic glass transitions and structure transformations in cryovacuum condensates of ethanol // Low Temp. Phys., 2009. № 4, p 251.

4 Y-Z, Yue and C. A. Angell, Nature, Clarifying the glass transition behavior of water by comparison with hyperquenched inorganic glasses // J. Chem. Phys. 2004. pp 717-721.

5 A. Drobyshev, A. Aldiyarov, V. Kurnosov, N. Tokmoldin. Thermally stimulated transformations in cryovacuum water ices // Low. Temp. Phys. 2007. Vol. 33, pp355-361.

6 A. Drobyshev, K. Abdykalykov, A. Aldiyarov, V. Kurnosov, N. Tokmoldin. IR spectra of water polyaggregates in a nitrogen cryomatrix // Low Temp. Phys. 2007. Vol. 33, pp 699-703.

7 Grant E.H., Buchanan T.J., Cook H.F. Deflections of plates on elastic foundation // J. Chem. Phys. 1957. V. 26, № 6, pp 156-175.

8 C. Talon, M. Ramos, S. Vieira, G. Guello, F. Bermejo, A. Griado, M. Senent, S. Bennington, H. Fischer, H. Schober. Investigation of dynamic glass transitions and structural transformations in cryovacuum condensates // Phys.1998. V. 58, p 745.

9 M.A. Ramos, I. Shmyt’ko, E. Arnautova, R. Jim.enez-Riob.oo, V. Rodrigez-Mora, S. Vieira, M.J. Capit.an. J. Non-Cryst. Solids. 2006. Vol. 352, pp 47-69.

10 A. Aldiyarov, M. Aryutkina, A. Drobyshev, M. Kaikanov, V. Kurnosov. Investigation of dynamic glass transitions and structure transformations in cryovacuum condensates of ethanol // Low Temp. Phys. 2009. № 6, p 251.

11 А. Алдияров, М. Арюткина, А. Дробышев, В. Курносов, ИК-спектроскопия этанола в криоматрице азота // Физика низких температура. 2011. №6,p 37.

12 Zimmerman R., Pimental G. The infrared spectrum of ice; temperature dependence of the hydrogen bond potential function // Advances in molecular spectroscopy. New York Bentwood. 1962. pp 726-737.

13 Lippincott E.R., Schroeder R., The mechanical properties of single crystals of pure ice // J. Chem. Phys. 1955. № 10, pp 1099-1111.

Downloads

Published

2013-06-17

Issue

Section

Thermal Physics and Theoretical Thermal Engineering