Novel semiconductor low-dimensional heterostructures: formation, crystal structure and energy spectrum

Authors

  • D.S. Abramkin A.V. Rzhanov Institute of semiconductor physics of Siberian Branch of Russian Academy of Science, Russia, Novosibirsk
  • A.K. Bakarov A.V. Rzhanov Institute of semiconductor physics of Siberian Branch of Russian Academy of Science, Russia, Novosibirsk
  • M.O. Petrushkov A.V. Rzhanov Institute of semiconductor physics of Siberian Branch of Russian Academy of Science, Russia, Novosibirsk
  • E.A. Emelyanov A.V. Rzhanov Institute of semiconductor physics of Siberian Branch of Russian Academy of Science, Russia, Novosibirsk
  • M.A. Putyato A.V. Rzhanov Institute of semiconductor physics of Siberian Branch of Russian Academy of Science, Russia, Novosibirsk
  • V.V. Preobrazhensky A.V. Rzhanov Institute of semiconductor physics of Siberian Branch of Russian Academy of Science, Russia, Novosibirsk
  • B.R. Semyagin A.V. Rzhanov Institute of semiconductor physics of Siberian Branch of Russian Academy of Science, Russia, Novosibirsk
  • M.Yu. Yesin A.V. Rzhanov Institute of semiconductor physics of Siberian Branch of Russian Academy of Science, Russia, Novosibirsk
  • A.S. Kozhukhov A.V. Rzhanov Institute of semiconductor physics of Siberian Branch of Russian Academy of Science, Russia, Novosibirsk
  • A.K. Gutakovskii A.V. Rzhanov Institute of semiconductor physics of Siberian Branch of Russian Academy of Science, Russia, Novosibirsk
  • T.S. Shamirzaev A.V. Rzhanov Institute of semiconductor physics of Siberian Branch of Russian Academy of Science, Russia, Novosibirsk
        30 25

Keywords:

quantum dots, quantum wells, band alignment of type-I, indirect bandgap, exciton, spin relaxation, long lifetime

Abstract

Semiconductor low-dimensional III-V heterostructures with novel energy spectrum of type-I and indirect bandgap are discussed in the paper. Charge carriers separation in reciprocal space for these structures results in localized exciton lifetime rising up to hundreds of microseconds. This is allow to investigate processes which are hard to study in direct bandgap systems with fast lifetime (~ 1 ns), for example ecxiton spin relaxation in quantum dots (QDs). The heterostructures were grown by molecular-beam epitaxy technique. Crystal structure was investigated by transmission electron microscopy. Energy spectrum was studied by steady-state and time-resolved photoluminescence spectroscopy. The experimental data supplied by calculations. It was shown, that energy spectrum of type-I and indirect bandgap forms in structures with fully relaxed GaAs/GaP and GaSb/GaP QDs and with pseudomorphically strained III-Sb/AlAs quantum wells.

References

1 D. Bimberg, M. Grundmann, N.N. Ledentsov, Quantum dot heterostructures, (John Wiley & Sons, Toronto, 2001), 328 p.

2 Y. Matsumoto, T. Takagahara, Semiconductor Quantum Dots. Physics, Spectroscopy and Applications, (Springer, Berlin, 2002), 486 p.

3 R. Tsu, Superlattice to Nanoelectronics, (Elsevier, Amsterdam, 2005), 325 p.

4 M. Grundmann, O. Stier and D. Bimberg, Phys. Rev. B, 52, 11969 (1995).

5 N. N. Ledentsov, J. Bohrer, M. Beer, F. Heinrichsdorff, M. Grundmann, D. Bimberg, S. V. Ivanov, B.Y. Meltser, S.V. Shaposhnikov, I.N. Yassievich, N.N. Faleev, P.S. Kop’ev and Z. I. Alferov, Phys. Rev. B 52, 14058 (1995).

6 F. Hatami, N.N Ledentsov, M. Grundmann, J. Bohrer, F. Heinrichsdorff, M. Beer, D. Bimberg, S.S. Ruvimov, P. Werner, U. Gosele, J. Heydenreich, U. Richter, S.V. Ivanov, B. Ya. Meltser, P.S.Kop’ev and Z.I. Alferov, Appl. Phys. Lett. 67, 656 (1995).

7 H. W. van Kesteren, E. C. Cosman, P. Dawson, K. J. Moore, C. T. Foxon, Phys. Rev. B, 39, 13426 (1989).

8 Vailionis, B. Cho, G. Glass, P. Desjardins, David G. Cahill, J.E. Greene, Phys. Rev. Lett. 85, 3672, (2000).

9 S. Shamirzaev, J. Debus, D. S. Abramkin, D. Dunker, D. R. Yakovlev, D. V. Dmitriev, A. K.Gutakovskii, L. S. Braginsky, K. S. Zhuravlev, and M. Bayer Phys. Rev. B 84, 155318 (2011).

10 W. Tomm, T. Elsaesser, Yu. I. Mazur, H. Kissel, G. G. Tarasov, Z. Ya. Zhuchenko, W. T. Masselink, Phys. Rev. B 67, 045326 (2003).

11 D. Dunker, T. S. Shamirzaev, J. Debus, D. R. Yakovlev, K. S. Zhuravlev, and M. Bayerless, Appl. Phys. Lett. 101, 142108 (2012).

12 S. Shamirzaev, J. Rautert, D. R. Yakovlev, J. Debus, A. Yu. Gornov, M. M. Glazov, E. L. Ivchenko, and M. Bayer, Phys. Rev. B 96, 035302 (2017).

13 J. Debus, T. S. Shamirzaev, D. Dunker, V. F. Sapega, E. L. Ivchenko, D. R. Yakovlev, A. I. Toropov, and M. Bayer, Phys. Rev. B 90, 125431 (2014).

14 A.V. Khaetskii, Yu.V. Nazarov, Phys. Rev. B 61, 12639 (2000).

15 T.S. Shamirzaev, A. M. Gilinsky, A. K. Kalagin, A. V. Nenashev, and K. S. Zhuravlev, Phys. Rev. B, 76, 155309 (2007).

16 T. S. Shamirzaev, A. V. Nenashev, A. K. Gutakovskii, A. K. Kalagin, K. S. Zhuravlev, M. Larsson and P. O. Holtz, Phys. Rev. B 78, 085323 (2008).

17 M.-E. Pistol, C. E. Pryor, Phys. Rev. B 80,035316 (2009).

18 Shamirzaev. T.S. Type-I Semiconductor Heterostructures with an Indirect-Gap Conduction Band // Semiconductors – 2011, Vol. 45, P.96.

19 D. S. Abramkin, M. A. Putyato, S. A. Budennyy, A. K. Gutakovskii, B. R. Semyagin, V.V. Preobrazhenskii, O. F. Kolomys, V. V. Strelchuk, T. S. Shamirzaev, J. Appl. Phys. 112, 083713 (2012).

20 G. Stracke, E. M. Sala, S. Selve, T. Niermann, A. Schliwa, A. Strittmatter, and D. Bimberg, Appl. Phys. Lett. 104, 123107 (2014).

21 M. Heidemann, S. Hofling, and M. Kamp, Appl. Phys. Lett. 104, 011113 (2014).

22 I. Vurgaftman, J. R. Meyer, L. R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001).

23 P. M. Petroff, A.C. Gossard, and W. Wiegmann, Appl. Phys. Lett. 45, 620 (1984).

24 E. Michel, G. Singh, S. Slivken, C. Besikci, P. Bove, I. Ferguson, and M. Razegh, Appl. Phys. Lett. 65, 3338 (1994).

25 Shamirzaev, D. S. Abramkin, A. K. Gutakovskii, M. A. Putyato, Appl. Phys. Lett. 97, 023108 (2010).

26 D.S. Abramkin, M.A. Putyato, A.K. Gutakovskii, B.R. Semyagin, V.V. Preobrazhenskii, T.S. Shamirzaev, Semiconductors, 46, 1534 (2012).

27 T.S. Shamirzaev, D.S. Abramkin, A.K. Gutakovskii and M.A. Putyato, JETP Lett. 95, 601 (2012).

28 D.S. Abramkin, V.T. Shamirzaev, M.A. Putyato, A.K. Gutakovskii, T.S. Shamirzaev, JETP Lett. 99, 76 (2014).

29 D. S. Abramkin, E. A. Emelyanov, M. A. Putyato, A. K. Gutakovskii, A. S. Kozhukhov, B. R. Semyagin, V. V. Preobrazhanskii and T. S. Shamirzaev,
Bulletin of the Russian Academy of Sciences. Physics, 80, 17 (2016).
30 D.S Abramkin, K.M. Rumynin, A.K. Bakarov, D.A. Kolotovkina, A.K. Gutakovskii and T.S. Shamirzaev, JETP Lett. 103, 692 (2016).

31 Abramkin D.S., Bakarov A.K., Putyato M.A., Emelyanov E.A., Kolotovkina D.A., Gutakovskii A.K. and Shamirzaev T.S. Semiconductors 51, 1233 (2017).

32 D.S. Abramkin, A.K. Gutakovskii, T.S. Shamirzaev, J. Appl. Phys. 123, 115701 (2018).

33 D.S. Abramkin, А. K. Bakarov, А. K. Gutakovskii, Т. S. Shamirzaev, Fizika i tehnika poluprovodnikov, 52, 1280 (2018).

34 P. B. Hirsch, A. Howie, R. B. Nicholson, D. W. Pashley and M. J. Whelan, Electron microscopy of thin crystals, Krieger Pub Co, p. 574, (1968).

35 Van der Merve J. H., «Nesootvetstvie kristallicheskih reshetok I sily svyazi na poverhnosti razdela mezhdu orientirovannymi plenkami I podlozhkami», V kinge.: Monokristallicheskie plenki. M.: Мir, 1966, p.172-201.

36 C. G. Van de Walle, Phys. Rev. B 39, 1871 (1989).

37 J.N. Stirman, P.A. Crozier, D.J. Smith, F. Phillipp, G. Brill, S. Sivananthan. Appl. Phys. Lett., 84, 2530 (2004).

38 W.A. Harrison, «Electronic Structure and Properties of Solids», W.H. Freeman, SanFrancisco, (1980), p.838.

39 S. Thainoi, S. Kiravittaya, T. Poempool, Zon, S. Sopitpan, S. Kanjanachuchai, S. Ratanathammaphan, S. Panyakeow, J. of Crystal Growth 468, 737 (2017).

40 Klochikhin, A. Reznitsky, S. Permogorov, T. Breitkopf, M. Grun, M. Hetterich, C. Klingshirn, V. Lyssenko, W. Langbein and J. M. Hvam, Phys. Rev. B 59, 12947 (1999).

Downloads

Published

2018-09-29

Issue

Section

Condensed Matter Physics and Materials Science Problems. NanoScience