Analysis of methods for calculating the static characteristics of dense Coulomb systems

Authors

  • Yu.V. Arkhipov IETP, Al-Farabi Kazakh National University, Kazakhstan, Almaty
  • A. Askaruly IETP, Al-Farabi Kazakh National University, Kazakhstan, Almaty
  • A.B. Ashikbayeva Al-Farabi Kazakh National University, Kazakstan, Almaty
  • A.E. Davletov IETP, Al-Farabi Kazakh National University, Kazakhstan, Almaty
  • D.Y. Dubovtsev IETP, Al-Farabi Kazakh National University, Kazakhstan, Almaty
  • Kh. Santybayev IETP, Al-Farabi Kazakh National University, Kazakhstan, Almaty
  • I.M. Tkachenko Departamento de Matemática Aplicada, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain

Keywords:

one-component plasma, Coulomb system, hyper-netted chain approximation, Ornstein-Zernike integral equation, Cauchy-Schwarz inequality.

Abstract

In this paper, various methods for calculating static characteristics of plasma, such as HNC, MHNC, VMHNC, Percus-Yevik and analytical models were analyzed to satisfy a mathematical condition.

Structural characteristics of a one-component plasma were reconstructed in a wide range of coupling parameters within the most requested various modern methods (HNC, MHNC, VMHNC, Percus-Yevik, and analytical models). All these methods were analyzed to fulfill the fundamental Cauchy – Schwartz mathematical inequality. As a result a HNC method with the empirical expression of the bridge function and one of the recent methods for obtaining a structural factor based on a parameterized formula does not satisfy the inequality. The other methods for calculating static characteristics listed above beside the stated ones satisfy the condition. For the general analysis of a method, functional dependence was obtained expressing the Cauchy-Schwartz inequality. This dependence includes the frequency moments, which are defined within the framework of the method of moments. To satisfy the inequality, this relationship must be strictly positive. For each considered method of obtaining static structural characteristics, this relationship was calculated and analyzed. As a result, it was found that a number of methods do not satisfy the Cauchy-Schwartz inequality.

References

1 F.B. Baimbetov i dr. Osnovy fiziki upravlyayemogo termoyadernogo sinteza. (Almaty-Kurchatov, 2004), 232 s. (in Russ).

2 Yu.V. Arkhipov, F.B. Baimbetov, A.Ye. Davletov, K.V. Starikov0 Psevdopotentsial'naya teoriya plotnoy vysokotemperaturnoy plazmy, (Qazaqˌ Universiteti, Almaty, 2002), 113 s. (in Russ).

3 K. Binder & D.W. Heermann, Monte Carlo Simulation in Statistical Physics. An Introduction (4th edition), (Springer, 2002), ISBN 3-540-43221-3.

4 M. Griebel; S. Knapek; G. Zumbusch Numerical Simulation in Molecular Dynamics. Berlin, Heidelberg, (Springer, 2007), ISBN 978-3-540-68094-9.

5 Ng K.–Ch. J. Chem. Phys, 61, 2680 (1974).

6 Yu.V. Arkhipov et al., Phys. Rev. Lett., 119, 045001 (2017).

7 S.V. Adamjan et al., Phys. Rev. E. 48, 2067 (1993).

8 Yu.V. Arkhipov et al., Contributions to Plasma Physics, 53, 375 (2013).

9 Yu.V. Arkhipov i dr. Mezhdunarodnaya nauchnaya konferentsiya «Aktual'nyye problemy sovremennoy fiziki», 169 (2013). (in Russ).

10 N. March, M. Tosi Dvizheniye atomov zhidkosti, (M.: Metallurgiya, 1980), 296 s. (in Russ).

11 M.S. Wertheim, Phys. Rev. Lett., 10, 321 (1963).

12 G. Faussurier, Phys. Rev. E., 67, 046404 (2003).

13 F. Lado Mol. Phys., 31, 1117 (1976).

14 Y. Rosenfeld, J. Stat. Phys., 42, 437 (1986).

15 Y. Rosenfeld, N.W. Aschcroft, Phys.Rev.A., 20, 1208 (1979).

16 G. Faussurier, Phys. Rev. E., 69, 066402 (2004).

17 N. Desbiens et al., Physics of Plasma, 23, 092120 (2016).

18 D.A. Young et al., Phys. Rev. A., 44, 6508 (1991).

19 W. Daughton et al., Phys. Rev. E., 61, 2129 (2000).

20 H. Iyetomi et al., Phys. Rev. A., 46, 1051 (1992).

21 I.M. Tkachenko, Yu.V. Arkhipov, and A.Askaruly, The Method Of Moments and its Applications in Plasma Physics, (Lambert Academic Publishing, Germany, 2012), 125 р.

22 I.M. Tkachenko et al., J.Phys. IV France, 10, 199 (2000).

23 Yu.V. Arkhipov et al., Inter. J Math. Ph., 4, 38 (2013).

24 Yu.V. Arkhipov et al., Inter. J Math. Ph., 4, № 1, 80 (2013).

25 V.M. Adamyan and I.M. Tkachenko, Contrib. Plasma Phys., 43, 252 (2003).

Downloads

Published

2018-10-30